
Future Generation Computer Systems 78 (2018) 272–286

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

MigPF: Towards on self-organizing process rescheduling of
Bulk-Synchronous Parallel applications
Rodrigo da Rosa Righi a,∗, Roberto de Quadros Gomes a, Vinicius Facco Rodrigues a,
Cristiano André da Costa a, Antonio Marcos Alberti b, Laércio Lima Pilla c,
Philippe Olivier Alexandre Navaux c

a Universidade do Vale do Rio dos Sinos, Rio Grande do Sul, Brazil
b Instituto Nacional de Telecomunicações, Minas Gerais, Brazil
c Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil

h i g h l i g h t s

• We are proposing MigPF, a migration model for Bulk-Synchronous Parallel programs on heterogeneous environments.
• Using ideas from the TCP protocol, MigPF adapts the interval between migration calls.
• Scientific contribution includes a new algorithm that self-organizes process migration.
• We implemented a prototype running over AMPI and evaluated against other proposals.
• Shear-sort and Image Compression applications were tested in a heterogeneous cluster.

a r t i c l e i n f o

Article history:
Received 10 November 2015
Received in revised form
19 April 2016
Accepted 5 May 2016
Available online 18 May 2016

Keywords:
Bulk Synchronous Parallel
Process migration
Load balancing
Self-organizing

a b s t r a c t

Migration is a known technique to offer process rescheduling, being especially pertinent for Bulk
Synchronous Parallel (BSP) programs. Such programs are organized in a set of supersteps, in which the
slowest process always determines the synchronization time. This approach motivated us to develop a
first model called MigBSP, which combines computation, communication, and migration costs metrics
for process rescheduling decisions. In this paper, a new model named MigPF enhances our previous
work in three aspects: (i) a different algorithm for detecting imbalance situations, which considers the
performance of each processor, including its enclosed processes, instead of individual times of each
process; (ii) an improvement on the rescheduling reactivity through shortening the interval for the next
migration call when imbalance situations arise; (iii) a new algorithm for self-organizing the migratable
processes and their destinations. Particularly, this third item represents our main scientific contribution,
not only in terms of theMigBSP context, but also in a broader one that covers the entire BSP landscape. The
algorithm assembles n possible rescheduling plans (where n is the number of processes) and provides a
prediction function (pf ) that chooses themost profitable rescheduling planwhen compared to the current
mapping.We developed aMigPF prototype with the AdaptiveMPI (AMPI) library, which offers a standard
framework for implementing migration-based load balancing policies. We tested this prototype against
other built-in AMPI rescheduling policies with two scientific applications: shear sorting and fractal image
compression. The results revealed performance gains up to 41% and an overhead limited to 5% when
migrations do not take place.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Process scheduling is a key technique for providing high
performance to parallel applications [1–3]. It concerns a first
mapping of processes to resources in order to optimize an adopted

∗ Corresponding author.
E-mail address: rrrighi@unisinos.br (R. da Rosa Righi).

metric (or a set of them), normally the application’s total execution
time (or makespan). Nevertheless, the power of using a parallel
machine can be minimized, or yet, nullified, if the following
scenarios occur [4,5]: (i) bad use of heterogeneous resources,
mainly when considering round-based applications1; (ii) shared

1 Here, round-based or iterative applications refer to BSP (Bulk-Synchronous
Parallel) applications [6,7].

http://dx.doi.org/10.1016/j.future.2016.05.004
0167-739X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2016.05.004
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2016.05.004&domain=pdf
mailto:rrrighi@unisinos.br
http://dx.doi.org/10.1016/j.future.2016.05.004


R. da Rosa Righi et al. / Future Generation Computer Systems 78 (2018) 272–286 273

infrastructures with fluctuations on network bandwidth and
CPU load; (iii) irregular applications in which computation and
communication patterns are not predictable at either editing or
compilation time. An alternative should concern the rewriting of
application source code for providing either sender- or receiver-
initiated load balancing algorithms [8–10]. This style of load
balancing requires detailed knowledge of the application code, and
the same can be extended for the parallel machine. Another less
intrusive alternative considers the use of rescheduling enabled by
process migration [11,12]. This technique can be implemented by
using migration directives at predetermined places according to
a parallel programming model (Master–Slave, Bulk Synchronous
Parallel, Divide-and-Conquer and Pipeline) [2,13–15].

Process migration is especially important on Bulk Synchronous
Parallel (BSP) [6,7] applications, in which the slowest processor
always limits the application’s performance, since the others must
wait on barrier synchronization. BSP represents a common model
for writing successful parallel programs that exhibit a phase-based
computational behavior [14,16]. Thus,migration canbenefit a large
set of applications in production worldwide. Technically, a BSP
application is composed by a set of rounds or supersteps, each
one composed by parallel computation on each process, arbitrary
communication among them, and a barrier synchronization. In
particular, the barrier can be seen as a pertinent place to do
the process rescheduling whereas there is a complete knowledge
of the system (processes and parallel machine) and there is no
communication in transit [17]. Aiming to cover process migration
on BSP applications efficiently, we developed a rescheduling
model called MigBSP [17]. This model combines computation,
communication and migration costs metrics to answer the three
traditional questions regarding load balancing: (i)When to activate
it? (ii)Which processes will be involved? and (iii)Where to put the
processes selected for migration?

MigBSP was demonstrated as a viable alternative for the
rescheduling of scientific applications on multi-cluster environ-
ments as attested by our previous works [17,18]. Despite the en-
couraging results, we envisioned threeweak points of theMigBSP’s
approach, as depicted in Fig. 1. First of all, the mechanism used
for detecting load imbalance monitors the times of the fastest and
slowest processes, which can lead to premature decisions when
there is more than one process per core (or processor entity).
Fig. 1(a) presents a false-positive (top) and a false-negative (bot-
tom) analysis on imbalance detection. For example, an imbalanced
state can trigger useless migrations and imposes more overhead
in the application execution, since the periodicity of reschedul-
ing attempts can become shorter to address this situation quickly.
Fig. 1(b) illustrates the current MigBSP’s adaptation to regulate α
parameter,which is responsible for controlling the next interval for
the process rescheduling. Here, themain problem consists in a low
reactivity2 to reorganize the processes when imbalance situations
take place. For example, after crossing superstep 30 in Fig. 1(b), the
system is diagnosed as imbalanced, but the next attempt to reor-
ganize the process will only happen 8 supersteps ahead from this
point. Finally, MigBSP selects the migratable processes using list
scheduling and a metric named Potential of Migration (PM) [18].
After ordering the list, it is possible to use one of two heuristics
as depicted in Fig. 1(c): (i) select the process on the top; (ii) se-
lect a number of processes based on the value of the process on the
top. However, the approach (i) can suffer again from lack of reactiv-
ity. And the approach (ii), the heuristic needs a parameter which is
not tangible for users and it must be replaced each time that some
changes to the application source code are done and/or resources
changes are perceived.

2 Reactivity on processmigration refers to speed to reach a balanced statedwhen
an imbalanced state takes place [18].

Fig. 1. Some drawbacks of MigBSP [17] that can be further explored: (a) False-
positive (top) and false negative (bottom) imbalance detection situations caused
when MigBSP monitors the time of the fastest and slowest processes instead of
the time of processors; (b) MigBSP uses an index called α that can generate low
reactivity to reorganize the processeswhen load imbalance takes place; (c) The user
must specify amigration heuristic by hand, which cannot be optimized or until now
can only be functional for a particular set of resources-application.

In this context, we proposeMigPFwhich redesignsMigBSPwith
the keywords transparency, performance and automatism inmind.
More precisely, MigPF addresses three aspects as denoted below:

(i) We redesigned the algorithm that measures whether the
system is balanced or not, taking into account the behavior of
both processes and processors;

(ii) We made the adaptable interval between supersteps more
reactive in order to address imbalance situations in a better
way;

(iii) We are providing pf : a prediction function to address process
migration and their respective destinations, self-organizing
these two load balancing decisions (Which andWhere)without
user intervention.

At each migration call, we are using pf and the largest PM
of each process to on-the-fly create up to n new rescheduling



Download English Version:

https://daneshyari.com/en/article/4950276

Download Persian Version:

https://daneshyari.com/article/4950276

Daneshyari.com

https://daneshyari.com/en/article/4950276
https://daneshyari.com/article/4950276
https://daneshyari.com

