
Future Generation Computer Systems 78 (2018) 402–412

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Reprint of ‘‘Multi-QoS constrained and Profit-aware scheduling
approach for concurrent workflows on heterogeneous systems’’
Hamid Arabnejad, Jorge G. Barbosa ∗
LIACC, Departamento de Engenharia Informática, Faculdade de Engenharia, Universidade do Porto, Portugal

h i g h l i g h t s

• A new dynamic resource management algorithm for concurrent workflows.
• Profit-aware algorithm that complies to users QoS requirements.
• Concurrent scheduling constrained to individual time and cost constraints.
• A realistic simulation that considers a bounded multi-port model.
• Results for randomly generated graphs as well as for real-world applications.

a r t i c l e i n f o

Article history:
Available online 18 November 2016

Keywords:
Quality of service
On-line scheduling
Deadline
Budget

a b s t r a c t

The execution of a workflow application can result in an imbalanced workload among allocated
processors, ultimately resulting in a waste of resources and a higher cost to the user. Here, we consider
a dynamic resource management system in which processors are reserved not for a job but only to run a
task, thus allowing a higher resource usage rate. This paper presents a scheduling algorithm thatmanages
concurrent workflows in a dynamic environment in which jobs are submitted by users at any moment in
time, on shared heterogeneous resources, and constrained to a specified budget and deadline for each job.
Recent research attempted to propose dynamic strategies for concurrent workflows but only addressed
fairness in resource sharing among applications while minimizing the execution time. The Multi-QoS
Profit-Aware scheduling algorithm (MQ-PAS) proposed here is able to increase the profit achieved by the
provider by considering the budget available for each job to define tasks priorities.We study the scalability
of the algorithm with different types of workflows and infrastructures. The experimental results show
that our strategy improves provider revenue significantly and obtains comparable successful rates of
completed jobs.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Many scheduling algorithms have been proposed to optimize
the execution of a single workflow application on Heterogeneous
Computing Systems (HCS) and with a single Quality of Service
(QoS) parameter, usually minimizing the execution time of the
application [1–3]. However, with the introduction of other factors
such as execution cost, more objectives must be considered based
on a user’s QoS requirements. Conversely, other studies [4] show
that the execution of a single workflow on a set of processors

DOI of original article: http://dx.doi.org/10.1016/j.future.2016.10.003.
∗ Corresponding author.

E-mail addresses: hamid.arabnejad@dcu.ie (H. Arabnejad), jbarbosa@fe.up.pt
(J.G. Barbosa).

leads to a wastage of resources because the degree of parallelism
of the application depends upon the workflow structure. Although
the provider might charge for all processors during the execution
time, doing so is evidence that resources are being wasted because
workflow jobs are not able to use them fully.

Users tend to overestimate the resources that are required to
guarantee that their jobs are not stopped before completing the
required computations [5]. Therefore, a plausible solution is to
run concurrent jobs in the same set of processors such that no
static reservation is made per job. [6] showed the advantages of
this approach, which led to a reduction of the number of nodes
required and, consequently, to energy savings. To regulate the
resource allocation procedure by user, the utility model [7] allows
the provision of computing resources to consumers as needed and
a payment model that charges for usage. This model has been used
in computational grids and clouds. In this paper, we consider the
utility model applied to a computational heterogeneous site.

http://dx.doi.org/10.1016/j.future.2016.11.016
0167-739X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2016.11.016
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2016.11.016&domain=pdf
http://dx.doi.org/10.1016/j.future.2016.10.003
mailto:hamid.arabnejad@dcu.ie
mailto:jbarbosa@fe.up.pt
http://dx.doi.org/10.1016/j.future.2016.11.016


H. Arabnejad, J.G. Barbosa / Future Generation Computer Systems 78 (2018) 402–412 403

Fig. 1. A general view of the framework for concurrent workflow scheduling.

The algorithm proposed in this paper is intended to limit
the costs for the user when running workflow applications and
to allow the provider to obtain higher revenues by retaining a
higher rate of successful completed applications andbyprioritizing
workflows attending to their available budget. In a real system,
users submit their jobs at any moment in time. Therefore, the
proposed algorithm is able to support the scheduling of concurrent
workflow applications, which can be submitted at different
moments in time and with individual QoS parameter values.

We introduce here a new scheduling strategy, Multi-QoS Profit-
Aware scheduling algorithm (MQ-PAS), for scheduling concurrent
workflow applications with multiple QoS constraints, here, time
and cost. The MQ-PAS algorithm contains two main steps: first,
it selects a task from each ready workflow and assigns a priority
to each task based on the remaining time to application deadline
and available budget. Second, for the higher priority task, MQ-PAS
selects a suitable resource based on a quality measure computed
for each resource.

The main contributions of this paper are (a) the proposal
of a new low-time-complexity scheduling algorithm to address
concurrent workflows constrained to time and cost. Our algorithm
increases the provider profit while retaining, and in some cases in-
creasing, the success rate of successful applications. (b)We present
a realistic simulation that considers a bounded multi-port model
in which bandwidth is shared by concurrent communications, and
(c) we present results for randomly generated graphs and for real-
world applications.

The remainder of the paper is organized as follows. In the next
section, we describe a framework for concurrent job scheduling
and the computational model. In Section 3, we describe the related
work. That description is followed by the details of our MQ-PAS
scheduling algorithm in Section 4. In Section 5, we show the
benefits of the MQ-PAS via comparison and simulation. Finally,
Section 6 presents conclusions and directions for future work.

2. Scheduling framework

The target utility computing platform is composed of a set of
heterogeneous resources that provide services of different capabil-
ities and costs [7]. Processor prices are defined such that the most
powerful processor has the highest cost and the least powerful pro-
cessor has the lowest cost. In a utility grid, the resource price is
commonly defined and charged per time unit [8–10] such that if a
task takes k time units to process in a resource that costs y euros
per time unit, then the cost of executing the task in that resource
is k× y euros.

Fig. 1 describes the framework modules required for an
effective scheduling of concurrent workflows. Applications can be

submitted into the system by any user and at any moment in time.
The aim of this structure is to schedule tasks from the workflow
applications into available resources, constrained by the user’s QoS
demands. Submitted applications are collected by an Application
Data Base (DB) with user specifications and QoS requirements. In
this architecture, a Framework Scheduler (FS) receives applications
from the Application DB and generates task-to-resource maps for
all applications. To make a proper decision concerning resource
selection strategy for each application’s task, FS needs the status
information of available resources. TheResource Service Information
is responsible for observing and collecting information about the
current state of resources such as resource capacities,memory size,
network bandwidth, availability, functionality and, in particular,
the available time slots for processing tasks. In addition to
resource status, the list of ready-to-execute tasks and user QoS
requirements for each application are necessary to make a feasible
schedule. The Ready Task poolmodule collects tasks that are ready
to execute from among accepted workflow applications in the
Application DB. A task is considered ready when its parents are
executed. The QoS Parameter module contains the users’ QoS
requests for their workflow applications. These two modules are
used to select the task and related application in each step of the
scheduling process. The Service Executor module implements the
task assignment by submitting each task to the selected resource
and monitoring its execution. Finally, Task scheduler finds the
suitable task-to-processormap for executing each ready task based
on its QoS attributes and on the detailed information of each
service.

2.1. Application model

A workflow application can be represented by a Directed
Acyclic Graph (DAG) in which nodes represent tasks and edges
represent task and data dependencies. A dependency ensures
that a child node cannot be executed before all its parent tasks
finish successfully and transfer the required child input data. The
overall finish or completion time of an application is usually called
the schedule length or makespan. The model to obtain the total
execution cost for an application can consider computation costs,
storage costs and data transfer costs.

A DAG can be modeled by a tuple, G = ⟨T , E⟩, consisting of a
set of tasks, T = {t1, t2, . . . , tn}, in which n is the number of tasks
in the workflow, and a set of dependencies among the tasks, E =
{⟨ta, tb⟩, . . . , ⟨tx, ty⟩}, in which ta and tx are parent tasks of tb and
ty, respectively. The C (ti→tj) represents the average communication
timebetween the parent task ti and child task tj, which is calculated
based on the average bandwidth and latency among all processor
pairs. This simplification is commonly considered to label the edges



Download English Version:

https://daneshyari.com/en/article/4950286

Download Persian Version:

https://daneshyari.com/article/4950286

Daneshyari.com

https://daneshyari.com/en/article/4950286
https://daneshyari.com/article/4950286
https://daneshyari.com

