
Future Generation Computer Systems () –

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

DPM: A novel distributed large-scale social graph processing
framework for link prediction algorithms
Alejandro Corbellini ∗, Daniela Godoy, Cristian Mateos, Silvia Schiaffino,
Alejandro Zunino
ISISTAN-CONICET, UNICEN, Paraje Arroyo Seco - Campus Universitario, CP7000, Tandil, Buenos Aires, Argentina

h i g h l i g h t s

• A novel framework that supports link-prediction algorithms is proposed.
• The programming style is similar to the fork-join style and thus, easy to use.
• Experiments showed that the framework is fast, compared to other two frameworks.
• However, network usage is slightly higher than other frameworks.

a r t i c l e i n f o

Article history:
Received 20 June 2016
Received in revised form
16 January 2017
Accepted 12 February 2017
Available online xxxx

Keywords:
Distributed graph processing
Recommendation algorithms
Online Social Networks

a b s t r a c t

Large-scale graphs have become ubiquitous in social media. Computer-based recommendations in these
huge graphs pose challenges in terms of algorithm design and resource usage efficiency when processing
recommendations in distributed computing environments. Moreover, recommendation algorithms for
graphs, particularly link prediction algorithms, have different requirements depending of the way the
underlying graph is traversed. Path-based algorithms usually perform traversals in different directions
to build a large ranking of vertices to recommend, whereas random walk-based algorithms build an
initial subgraph and perform several iterations on those vertices to compute the final ranking. In this
work, we propose a distributed graph processing framework called Distributed PartitionedMerge (DPM),
which supports both types of algorithms and we compare its performance and resource usage w.r.t. two
relevant frameworks, namely Fork-Join and Pregel. In our experiments, we show that in most tests DPM
outperforms both Pregel and Fork-Join in terms of recommendation time, with a minor penalization in
network usage in some scenarios.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The suggestion of friends, contacts or followees in social
networks is one of the most prominent problems in today’s Online
Social Networks (OSNs). This type of recommendation serves
multiple purposes, which include reducing users effort in the
creation of their own personal networks, improving the quality of
user engagement with social sites, favoring information spreading
and contributing to the network expansion. In fact, the ‘‘Who to

∗ Corresponding author.
E-mail addresses: alejandro.corbellini@isistan.unicen.edu.ar (A. Corbellini),

daniela.godoy@isistan.unicen.edu.ar (D. Godoy),
cristian.mateos@isistan.unicen.edu.ar (C. Mateos),
silvia.schiaffino@isistan.unicen.edu.ar (S. Schiaffino),
alejandro.zunino@isistan.unicen.edu.ar (A. Zunino).

Follow’’ followee recommender service of Twitter is responsible
for more than one-eighth of all new connections and it has been
one of the major drivers of the company revenue [1].

The problem of suggesting users in an OSN is usually casted to
a link prediction problem [2], which tries to infer a non-existent
or missing relationship between two persons that is likely to
occur in the future. Methods for link prediction use topology-
based similarity metrics that can be categorized into path-based,
neighbor-based (neighbor-based can be seen as a special case of
path-based algorithms of length two) and random walk-based.
Several social network recommendation algorithmsbased on these
notions can be found in the literature [1,3,4].

Computing link prediction algorithms on real-world, large-
scale social networks poses challenges regarding algorithm scal-
ability considering the inherent huge resource needs (i.e. mem-
ory, CPU cores) and performance requirements (e.g. providing
fast, real-time recommendations).Most link prediction algorithms,

http://dx.doi.org/10.1016/j.future.2017.02.025
0167-739X/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2017.02.025
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:alejandro.corbellini@isistan.unicen.edu.ar
mailto:daniela.godoy@isistan.unicen.edu.ar
mailto:cristian.mateos@isistan.unicen.edu.ar
mailto:silvia.schiaffino@isistan.unicen.edu.ar
mailto:alejandro.zunino@isistan.unicen.edu.ar
http://dx.doi.org/10.1016/j.future.2017.02.025

2 A. Corbellini et al. / Future Generation Computer Systems () –

both commercial ones and those developed in the academia, have
been implemented as single-machine, single-threaded applica-
tions [1,5]. In consequence, these implementations struggle with
scalability issues as the underlying social graph grows, which is
commonplace in OSNs populated by a myriad of users.

The natural choice to process large amounts of social data are
distributed graph frameworks. In particular, the implementation
of link prediction algorithms can be adjusted to different classic
distributed processing models, such as MapReduce [6], BSP [7] or,
specifically for graphs, Pregel [8]. Such processing models pre-
scribe certain primitives that govern how sub-computations are
created and coordinated. However, in terms of graph operations,
path-based algorithms have completely different requirements
than random walk (RW)-based algorithms. The first ones perform
graph traversal operations for a small amount of steps, while the
second ones run a successive number of iterations over subgraphs.
Hence, counting with the adequate processing framework directly
impacts on the performance of the recommendation algorithm.

For graph processing, a generic model such as Fork-Join (FJ) [9]
provides a classic divide-and-conquer programming style, in
which vertex processing is managed by a parent job that creates
and distributes independent tasks and merges their computed
results. On the other hand, models like Pregel provide a vertex-
centric programming style and distribute the task of merging
results among all computing nodes. These frameworks have the
disadvantage of being oriented to certain types of algorithms. FJ
is usually a good choice for algorithms that execute over a small
amount of steps, whereas in the case of iterative algorithms, FJ
suffers from the bottleneck produced by the centralized join of
results. Pregel, instead, performs well with iterative algorithms
but it is not a good fit for algorithms that traverse paths for a
small amount of steps. Moreover, algorithm code using the vertex-
centric model is usually harder to develop and comprehend due to
the message-based communication of results [10].

In this paper, a novel graph processingmodel called Distributed
Partitioned Merge (DPM) is proposed. DPM is a hybrid model
since it combines the simplicity of the FJ programming style
and the performance and scalability provided by the Pregel
framework. In this regard, the main objective of DPM is to quickly
compute path-based and RW-based link prediction algorithms,
while still providing an easy-to-use programming style as well as
a seamlessly integration with a platform specifically designed for
providing support for the development of recommender systems
in OSNs [11].

In addition, a thorough comparison of FJ, Pregel and DPM for
supporting the distributed computation of various link prediction
algorithms from the literature was carried out considering the
requirements of each type of algorithm (path-based vs. RW-based)
in terms of recommendation time and resource consumption.
These experiments were performed on a large, real-world,
snapshot of the Twitter social network [12] containing 40 million
users and 1.4 billion relationships.

The rest of this article is organized as follows. Section 2
discusses related work regarding distributed large-scale graph
processing for recommender systems. Section 3 describes FJ,
Pregel, and the proposedmodel. Section 4 reports the experimental
setting and results obtained. Finally, conclusions are stated in
Section 5.

2. Related work

There are several studies that consider ad-hoc solutions as
well as framework-based solutions for distributed graph process-
ing. [13] analyzed the challenges in general-purpose distributed
graph processing and considered two ad-hoc implementations

over different distributed memory architectures. [14] built an ad-
hoc implementation of low-rank approximation of graphs and ap-
plied it to link prediction. Unfortunately, without proper back-
ground, ad-hoc implementations are usually hard to reuse and
maintain.

There are several general-purpose frameworks that have been
used to process large-scale graphs in link prediction. Frameworks
such as MapReduce [6], Fork-Join [15] or RDD (Spark) [16]
have been applied to various graph-related processing problems
[17–19]. Other frameworks, like Pregel [8] or GraphLab [20] are
specifically designed for graph-based algorithms [21,22]. DPM
differs from other frameworks in its ability to support both types
of link prediction algorithms.

The comparison of such processing frameworks is difficult due
to their design differences. For example, the original MapReduce
and Pregel specifications based their failure recovery mechanisms
on checkpointing to persistent storage. Thereby, in these frame-
works the penalty of using I/O is very high in comparison to RDD-
based solutions such asGraphX. Nevertheless, there are some stud-
ies that compare processing frameworks, disregarding this un-
fairness. [23] performed a thorough comparison of the BSP and
MapReduce frameworks both in terms of performance and de-
sign drivers. Similarly, [24] restricted the performance compar-
ison to Pregel-like framework implementations. The work pre-
sented by [25] focused on vertex-centric frameworks (a.k.a. ‘‘think
like a vertex’’ frameworks) and makes a distinction from the clas-
sic BSP-based frameworks and graph databases. In contrast, the
experiments carried out in this work try to establish a common
ground of comparison by executing the three selected frameworks
(FJ, Pregel and DPM) over the same distributed computing plat-
form [11], sharing the same network communication and graph
storage support. The fairness in the comparison is of major impor-
tance for determining the right framework for each algorithm.

3. Distributed Partitioned Merge

Developing distributed link prediction algorithms is a difficult
task. Thus, the development of these algorithms is often based
on distributed processing platforms that provide abstractions that
isolate the user from the actual underlying distributed support
(both software and hardware). In fact, most distributed platforms
expose a programming model or framework that simplifies
algorithm development while, at the same time, enforces the
correct use of the platform. Even so, the choice ofwhich framework
is better for a given algorithm depends on the performance
requirements and the ease of use of the programming model. One
of the drivers involved in this decision is the type of link prediction
algorithm being developed.

For example, path-based link prediction algorithms fit naturally
under the divide-and-conquer strategy and, thus, a Fork-Join [15]
framework (also known as Split and Merge or Split and Reduce
in some frameworks1) may be a good fit. The main entity in
a distributed FJ algorithm is the FJ job, which represents the
computation as a whole. In the fork stage, the FJ job is responsible
of creating (or forking) parallel tasks to be executed in remote
nodes. Once a child task finishes its execution, it sends its results
back to the parent job. In this so-called join stage, the parent job
performs awaits for all the child tasks to finish and then merges
their results. The main disadvantage of this framework is that
merging sub-results in a single node produces a bottleneck that
may negatively impact on algorithms with multiple steps, such as
RW-based link prediction algorithms.

1 For example, GridGain’s TaskSplit, http://www.gridgain.com/api/javadoc/org/
gridgain/grid/compute/GridComputeTaskSplitAdapter.html.

http://www.gridgain.com/api/javadoc/org/gridgain/grid/compute/GridComputeTaskSplitAdapter.html
http://www.gridgain.com/api/javadoc/org/gridgain/grid/compute/GridComputeTaskSplitAdapter.html
http://www.gridgain.com/api/javadoc/org/gridgain/grid/compute/GridComputeTaskSplitAdapter.html
http://www.gridgain.com/api/javadoc/org/gridgain/grid/compute/GridComputeTaskSplitAdapter.html
http://www.gridgain.com/api/javadoc/org/gridgain/grid/compute/GridComputeTaskSplitAdapter.html
http://www.gridgain.com/api/javadoc/org/gridgain/grid/compute/GridComputeTaskSplitAdapter.html
http://www.gridgain.com/api/javadoc/org/gridgain/grid/compute/GridComputeTaskSplitAdapter.html
http://www.gridgain.com/api/javadoc/org/gridgain/grid/compute/GridComputeTaskSplitAdapter.html
http://www.gridgain.com/api/javadoc/org/gridgain/grid/compute/GridComputeTaskSplitAdapter.html
http://www.gridgain.com/api/javadoc/org/gridgain/grid/compute/GridComputeTaskSplitAdapter.html
http://www.gridgain.com/api/javadoc/org/gridgain/grid/compute/GridComputeTaskSplitAdapter.html
http://www.gridgain.com/api/javadoc/org/gridgain/grid/compute/GridComputeTaskSplitAdapter.html

Download English Version:

https://daneshyari.com/en/article/4950293

Download Persian Version:

https://daneshyari.com/article/4950293

Daneshyari.com

https://daneshyari.com/en/article/4950293
https://daneshyari.com/article/4950293
https://daneshyari.com

