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a  b  s  t  r  a  c  t

Time  series  forecasting  concerns  the prediction  of  future  values  based  on  the  observations  previously
taken  at  equally  spaced  time  points.  Statistical  methods  have been  extensively  applied  in the forecast-
ing  community  for the  past  decades.  Recently,  machine  learning  techniques  have  drawn  attention  and
useful  forecasting  systems  based  on these  techniques  have  been  developed.  In  this  paper,  we  propose
an  approach  based  on  neuro-fuzzy  modeling  for time  series  prediction.  Given  a predicting  sequence,  the
local  context  of  the  sequence  is located  in  the  series  of  the  observed  data.  Proper  lags  of  relevant  variables
are  selected  and training  patterns  are  extracted.  Based  on the  extracted  training  patterns,  a  set of  TSK
fuzzy  rules  are  constructed  and  the  parameters  involved  in the  rules  are  refined  by  a  hybrid  learning
algorithm.  The  refined  fuzzy  rules  are  then  used  for prediction.  Our  approach  has  several  advantages.
It  can  produce  adaptive  forecasting  models.  It works  for  univariate  and  multivariate  prediction.  It also
works  for  one-step  as  well  as multi-step  prediction.  Several  experiments  are  conducted  to demonstrate
the  effectiveness  of  the proposed  approach.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Time series prediction is concerned about the forecasting of
future values based on a time series of the previously observed data.
It has played an important role in the decision making process in
a variety of fields such as finance, power supply, and medical care.
One example is to use the previously collected data to predict the
stock exchange indices or the closing stock prices [1–9]. Another
example is to predict the electricity demand to avoid producing
extra electric power [10–13]. If forecasting is done for one time
step ahead into the future, it is called single-step or one-step pre-
diction. Forecasting can also be done for two or more time steps
ahead. In this case, it is called multi-step prediction [14–17].

Two approaches have been adopted for constructing time series
forecasting models. The global modeling approach constructs a
model which is independent of the target to be forecasted. For time
series prediction, the conditions of the environment may  vary as
time goes on. A global model is not adaptive and thus accuracy
suffers. A local model constructed by the local modeling approach
[19,18] is dependent on the target to be forecasted and there-
fore is adaptive. Local models are usually characterized by using
a small number of the neighbors in the proximity of the predicting
sequence. Another issue in time series prediction is to determine
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the lags to be involved in the model. The lags have a big influence
on the forecasting accuracy. For example, in steel making engineer-
ing [20,21], the furnace temperature will change after two  to eight
hours from the time when the materials are applied into the fur-
nace. This indicates there is a time lag of two  to eight hours for the
temperature change. Furthermore, the lags may  vary as time goes
on and adjusting them is required [22]. Two  strategies, direct [23]
and iterative [24], have been traditionally adopted for constructing
multi-step time series forecasting models. The difference between
them lies on the incorporation of the forecasts of previous steps
in the prediction of the current step. These strategies have their
respective pros and cons. Due to accumulated errors, an iterative
forecasting model may  suffer from low prediction accuracy. On the
other hand, a direct forecasting model can only acquire the esti-
mated value of the specified step. However, all the estimated values
up to the specified steps can be acquired by applying an iterative
model. It should be noted that several research efforts have been
paid to some new modeling strategies for multi-step time series
forecasting. For example, a smart and adaptive modeling strategy
was proposed in [17], which employs a PSO based heuristic to cre-
ate flexible divides with varying sizes of prediction horizons under
the multiple-input several multiple-output (MISMO) strategy.

Recently, machine learning techniques have drawn attention
and useful forecasting systems based on these techniques have
been developed [25]. The multilayer perceptron, often simply called
neural network, is a popular network architecture in use for time
series prediction [26–31]. Neural network encounters the local
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minimum problem during the learning process and the number
of nodes in the hidden layer is difficult to decide. Also, it is hard to
provide a comprehensible expression for humans to understand or
investigate. The k-nearest neighbor regression method is a non-
parametric method which bases its prediction on the k nearest
neighbors of the target to be forecasted [18,32]. However, it lacks
the capability of adaptation and the distance measure adopted
may  affect the prediction performance. Fuzzy theory is incorpo-
rated for prediction in stock market [2,3,5,6,33,7,8,34]. However,
membership functions need to be determined which is often a chal-
lenging task. Also, no learning is offered by fuzzy theory. Support
vector regression provides high accuracy in time series prediction
[35,12,9,13,16]. It is free from local minimum. However, the com-
putational burden is heavy due to solving quadratic programming
problems. Also, choosing kernels and hyperparameters may  not be
an easy task. To overcome these difficulties, the least squares form
of support vector regression was used [18] and a multiple-kernel
framework was adopted [36]. Neuro-fuzzy modeling is a hybrid
approach, which takes advantage of both fuzzy theory and neural
network learning techniques, for modeling complex relationships
between inputs and outputs [5,37,38,32]. However, deriving an
appropriate set of fuzzy rules automatically and refining the asso-
ciated parameters efficiently are two of the challenges involved.

In this paper, we propose an approach based on neuro-fuzzy
modeling for time series prediction. Given a predicting sequence,
the local context of the sequence is located in a series of the
observed data. A distance measure taking the trend of the data into
account is adopted. Proper lags of relevant variables for predic-
tion are selected and training patterns are extracted. Based on the
extracted training patterns, a set of TSK fuzzy rules are constructed
automatically by an incremental clustering algorithm. The param-
eters involved in the fuzzy rules are then refined by an efficient
hybrid learning algorithm which incorporates a least squares esti-
mator and the gradient descent method. The refined fuzzy rules
constitute the predicting model and can then be used for predic-
tion. Both direct and iterative forecasting models are developed.
Our approach has several advantages. It can produce adaptive fore-
casting models. It works for univariate and multivariate prediction.
It also works for one-step as well as multi-step prediction. The
neuro-fuzzy modeling scheme is adopted since it incorporates the
ideas of fuzzy theory and neural networks, offering good proper-
ties such as non-linear learning capability, quick convergence, and
high accuracy. Furthermore, the rules obtained are comprehensible
to human beings.

The rest of this paper is organized as follows. Section 2 describes
the problem to be solved. Section 3 gives a brief description of the
adopted neuro-fuzzy modeling technique. Our proposed approach
is outlined in Section 4. Section 5 describes the process of extract-
ing training patterns from a series of the observed data. Section 6
describes the process of deriving a forecasting model from the train-
ing patterns. A small example is given in Section 7. Experimental
results are presented in Section 8. Finally, concluding remarks are
given in Section 9.

2. Time series forecasting problem

Consider a series of real-valued observations [39]:

X0, Y0, X1, Y1, . . .,  Xt , Yt (1)

taken at equally spaced time points t0, t0 + �t,  t0+ 2�t, . . . for
some process P, where Yi denotes the value of the output vari-
able (or dependent variable) observed at the time point t0 + i�t and
Xi denotes the values of m additional variables (or independent
variables), m ≥ 0, observed at the time point t0 + i�t. Time series

prediction is to estimate the value of Y at some future time t + s, i.e.,
Yt+s, by

Ŷt+s = G(Xt−q, Yt−q, . . .,  Xt−1, Yt−1, Xt , Yt) (2)

where s ≥ 1 is called the horizon of prediction, G is the predicting
function or model, Yt−i is the ith lag of Yt, Xt−i is the ith lag of Xt,
and q is the lag-span of the prediction. For s = 1, it is called one-step
prediction. For s > 1, it is called multi-step prediction. Also, if m = 0,
it is univariate prediction; otherwise, it is multivariate prediction.
For convenience,

Q = 〈Xt−q, Yt−q, . . ., Xt−1, Yt−1, Xt , Yt〉 (3)

is called the predicting sequence for predicting Yt+s.
The prediction of Yt+s can be regarded as a function approx-

imation task. Two strategies are usually adopted to construct
forecasting models [23,24]:

• Direct. Train on Xt−q, Yt−q, . . .,  Xt−1, Yt−1, Xt, Yt to predict Yt+s

directly, for any s ≥ 1.
• Iterative. Train to predict Yt+1 only, but iterate to get Yt+s for any

s > 1.

These strategies work identically for the case of s = 1. However,
for the case of s > 1, the iterative strategy cannot work for multi-
variate prediction since Xt+1, . . .,  Xt+s−1 are not available to obtain
Ŷt+2, Ŷt+3, . . ., Ŷt+s successively for this case.

3. Neuro-fuzzy modeling

Neuro-fuzzy modeling concerns deriving a model for an
unknown system based on a set of training input–output data
observed for the system. The derived model consists of a set of fuzzy
rules which, given a certain input, can be used to predict the system
output through fuzzy inference. In this paper, we adopt the neuro-
fuzzy modeling technique proposed in [40]. Two stages, creation of
fuzzy rules and refinement of fuzzy rules, are involved in the mod-
eling process. In the first stage, a set of TSK fuzzy rules are generated
from given training patterns. In the second stage, the parameters
involved in the fuzzy rules are refined by a hybrid learning algo-
rithm. The refined fuzzy rules constitute the predicting model for
the unknown system and can then be used to predict the output of
the system.

Suppose the system we’d like to model has n input variables,
denoted as x = 〈x1, x2, . . .,  xn〉, and one output variable, y. A brief
description of the neuro-fuzzy modeling technique is given below.

3.1. Creation of fuzzy rules

Assume that we  are given a set T of N training patterns (pv, qv),
1 ≤ v ≤ N, where pv = 〈p1v, p2v, . . .,  pnv〉 and qv denote the n input
values and the desired output value, respectively, associated with
the vth pattern. By applying an incremental clustering algorithm
[38], the patterns in T are grouped into J clusters C1, C2, . . .,  CJ.
Each training pattern is assigned to only one cluster. Each cluster Cj,
1 ≤ j ≤ J, is characterized by Gj(x) and hj, where Gj(x) is a distribution
with mean mj = 〈m1j, m2j, . . .,  mnj〉 and deviation �j = 〈�1j, �2j, . . .,
�nj〉, and hj is the height of Cj. Note that mj, �j, and hj of Cj are
computed as follows:

• mij and �ij are the average and deviation, respectively, of the ith
coordinate of the patterns contained in Gj, 1 ≤ i ≤ n.

• hj is the average of the desired output values of the patterns
contained in Gj.
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