
Future Generation Computer Systems 74 (2017) 51–62

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A Critical Path File Location (CPFL) algorithm for data-aware
multiworkflow scheduling on HPC clusters
César Acevedo ∗, Porfidio Hernández, Antonio Espinosa, Víctor Méndez
Computer Architecture & Operating Systems Department (CAOS), Universitat Autònoma de Barcelona (UAB), Bellaterra (Barcelona), Spain

h i g h l i g h t s

• Multiworkflow scheduling strategy on a cluster is proposed.
• Critical path with data-aware.
• Scheduling is proposed to improve makespan of bioinformatic workflows.
• Simulator engine extension to scale on to a bigger cluster infrastructure and new storage hierarchy.

a r t i c l e i n f o

Article history:
Received 6 September 2016
Received in revised form
12 April 2017
Accepted 13 April 2017
Available online 24 April 2017

Keywords:
Multiworkflows
Cluster
Scheduler
Simulation
Critical path
Data processing

a b s t r a c t

A representative set of workflows found in bioinformatics pipelines must deal with large data sets. Most
scientific workflows are defined as Direct Acyclic Graphs (DAGs). Despite DAGs are useful to understand
dependence relationships, they do not provide any information about input, output and temporal data
files. This information about the location of files of data intensive applications helps to avoid performance
issues.

This paper presents a multiworkflow store-aware scheduler in a cluster environment called Critical
Path File Location (CPFL) policy where the access time to disk is more relevant than network, as an
extension of the classical list scheduling policies. Our purpose is to find the best location of data files
in a hierarchical storage system.

The resulting algorithm is tested in an HPC cluster and in a simulated cluster scenario with
bioinformatics synthetic workflows, and largely used benchmarks like Montage and Epigenomics. The
resulting simulator is tuned and validated with the first test results from the real infrastructure. The
evaluation of our proposal shows promising results up to 70% on benchmarks in real HPC clusters using
128 cores and up to 69% of makespan improvement on simulated 512 cores clusters with a deviation
between 0.9% and 3% regarding the real HPC cluster.

© 2017 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Current scientific applications must deal with large data sets,
usually demanding large amounts of computation and communi-
cation times. Schedulers are responsible for allocating applications
to processors and ensure the execution precedence. Applications in
a workflow are usually represented as a node in a graph.

Direct Acyclic Graphs (DAGs) are a good way of modeling task
dependency relationships like those typically found in a workflow.
Despite their wide usage to represent application stages, DAGs
lack relevant information on how to deal with data files. That is,

∗ Corresponding author.
E-mail address: cesar.acevedo@caos.uab.es (C. Acevedo).

they do not show any detail on how input, output, and temporal
data files are transferred to actual computational nodes where the
applications run.

Fig. 1 shows an example of the many combinations that can
be found when considering the possible locations of data files
and a common computational cluster system architecture. Cluster
nodes have their own memory hierarchy and their own secondary
storage subsystem where we can find hard drive disks and other
smaller but faster general purpose storage device. Also, nodes
are usually connected to a distributed file system via a fast
interconnection network. From the point of view of the data
handling, workflow stages need to manage input, output, and
many temporal files [1]. It becomes a challenge to determine
which is the best location for all the files needed for the different
computation steps defined in the workflow to get the best
performance of the system.

http://dx.doi.org/10.1016/j.future.2017.04.025
0167-739X/© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.
0/).

http://dx.doi.org/10.1016/j.future.2017.04.025
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2017.04.025&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:cesar.acevedo@caos.uab.es
http://dx.doi.org/10.1016/j.future.2017.04.025
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


52 C. Acevedo et al. / Future Generation Computer Systems 74 (2017) 51–62

Fig. 1. Application graph and its relationship with data localization.

Scheduling a workflow with precedence constraints is an
important problem in scheduling theory and has been shown to
be NP-Hard [2]. There are many studies on how to manage a
single workflow, specifically when trying to schedule tasks onto
heterogeneous domains [3]. There has been an increasing interest
in executing several workflows simultaneously. The problem of
defining which application from the multiple workflows is going
to be executed in a specific node of a cluster, has been described in
several works like [4–12].

Workflow-aware storage strategies study data file locations
in many levels of the storage and the memory hierarchy as
relevant criteria for the application scheduling. These strategies
have previously been used to reduce the I/O load of the network
of cloud [13] and grid systems. In these systems, when shared
files are read several times betweendifferent computational nodes,
the performance of the system depends on the interconnection
network capacity. In these cases, shared files are located on
local disks to reduce the amount of I/O operations. In a cluster
environment with a high-speed network the disk becomes the
demanding resource, which generates I/O waiting times when
many applications simultaneously request the access to files.
In HPC systems I/O performance has been studied by [14] that
proposes the use of Ramdisk as a storage systemwith data location
techniques on a section of the memory system.

When considering the data usage of common bioinformatics
workflows for common data analysis cases as variant analysis, read
mapping and sequence alignment, we find some common special
characteristics:

• Large volume of input data to be processed, starting at 2 GB for
bioinformatics data files.

• Large volume of data are sequentially processed in their
entirety, like input files for read mapping and data format
transformation.

• Important amount of data being shared by similar applications:
typically files like human genome indexes.

• Amount and volume of temporal files generated by some
applications. Input files of 2GB can generate between4 and6GB
of temporal files.

Due to the peculiarity of bioinformatics workflows that are
composed of many applications that share data files, we can take
advantage of keeping a cached version of input and temporal files.
Then, these files are kept in a highly accessible storage such as
ramdisk built in the main memory of the system or in a solid state
disk. From here, we propose an extension of the classic model to
a shared input file policy of execution and mapping of workflow
applications on this kind of system architectures.

In summary, we proposed at [15] a scheduling algorithm for
multiworkflows in a cluster environment called CPFL (Critical Path

File Location) that is a continuation of the work presented at [16].
Our objective is to improve the effective use of High Performance
Computing (HPC) platforms for the execution of Data Intensive
Applications (DIC) by extending the multiworkflow model on to
store-aware scheduling. Multiworkflow such as bioinformatic and
Epigenomics use shared input and temporal data files. Typical
bioinformatic workflow has input files starting at 2 GB that
generates temporal files of 6 GB. We realize that other workflows
such Montage [17] generate several shared temporal data files.
For a small Montage, 200 input files of 2 GB generate over 1000
shared temporal data files of up to 500 MB each. Due to that,
store-aware scheduling approach on cluster environment helps
to improve overall makespan. Keeping shared files on a storage
hierarchy system we reduce the time access to disk on regards to
network access.

We evaluate the effect of moving the execution of certain tasks
to nodes where needed data items are previously located. For
bioinformatics applications with input files in common, we move
those files to a fast memory storage level. As a result, we increase
locality and reduce the number of disk accesses. We also want
to support the execution of different workflows considering their
main resource limitations like Input/Output (I/O), memory or CPU.
To consider new technologies and different kind of workflows we
introduce a simulator and the extension needed to deploy the
scheduler on it.

This approach has been evaluated with an initial set of
experimental environments: a batch of workflows statically
merged into a meta-workflow and then applied a classic List
Scheduling like Heterogeneous Earliest Finish Time (HEFT). This
heuristic is typically used to schedule a set of dependent tasks
onto a network of heterogeneous workers taking computation
time into account. In our case, we have introduced the use of a
Network File System (NFS) as the storage system for all the data
files. This is compared against a new List Scheduling heuristic for
data-aware multiworkflows with a critical path using a local disk
and local Ramdisk as storage hierarchy. In our experiments, we
use synthetic bioinformatics workflows as a benchmark to test
our proposals as well as Montage and Epigenomics benchmarks
because they typically produce plenty of temporal files. The results
showperformance improvements up to 70% against HEFTmodified
for multiworkflow with better usage of storage hierarchy such as
local disk and ramdisk.

The rest of the paper is organized as follows. State of the
art is discussed in Section 2. Then, we give an overview of
the scheduler architecture in Section 3. Section 4 describes
WorkFlowSim simulation environment and introduces its use to
validate schedulers scalability. Section 5 elaborates the experiment
design and evaluates the performance of proposed algorithm in
the experimental platforms presented. Finally, in Section 6 we
summarize the results obtained and lay out the future work.

2. Related work

The scheduling problem, understood as the task of allocating
computational jobs to processors to define their order of execu-
tion without restrictions, is NP-complete [2]. As a relevant prob-
lem, many heuristics have been proposed for its resolution [18].
Among the most important we can find: clustering heuristics [19],
duplication based heuristics [20], meta heuristics (Genetic Al-
gorithms, Simulated Annealing, tabu search) and list scheduling
heuristics [21] based in assigning priorities depending on the crit-
ical path length associated to each node [3].

In our work, we are considering a generalization of the problem
taking scientific workflow tasks as jobs to manage. This case of
workflow scheduling has been widely studied and we can find
many algorithms based on DAG list scheduling heuristics. Some



Download English Version:

https://daneshyari.com/en/article/4950358

Download Persian Version:

https://daneshyari.com/article/4950358

Daneshyari.com

https://daneshyari.com/en/article/4950358
https://daneshyari.com/article/4950358
https://daneshyari.com

