
Future Generation Computer Systems 74 (2017) 63–75

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Querying massive graph data: A compress and search approach
Chemseddine Nabti, Hamida Seba ∗
Université de Lyon, CNRS, Université Lyon 1, LIRIS, UMR5205, 69622, Villeurbanne, France

h i g h l i g h t s

• A new subgraph isomorphism search algorithm is proposed for massive graph data.
• Simplifying graph querying known to be NP-complete especially for massive data.
• Querying compressed graph data without decompression.
• Deal with compressed graphs that are smaller and simpler than the original ones.
• Graphs are compressed by modular decomposition.

a r t i c l e i n f o

Article history:
Received 16 September 2016
Received in revised form
29 March 2017
Accepted 1 April 2017
Available online 13 April 2017

Keywords:
Subgraph isomorphism
Graph queries
Massive graph databases
Graph compression
Modular decomposition

a b s t r a c t

Querying graph data is a fundamental problem that witnesses an increasing interest especially for
massive graph databases which come as a promising alternative to relational databases for big data
modeling. In this paper, we study the problem of subgraph isomorphism search which consists to
enumerate the embedding of a query graph in a data graph. The most known solutions of this NP-
complete problem are backtracking-based and result in a high computational cost when we deal with
massive graph databases. We address this problem and its challenges via graph compression with
modular decomposition. In our approach, subgraph isomorphism search is performed on compressed
graphs without decompressing them yielding substantial reduction of the search space and consequently
a significant saving in processing time as well as in storage space for the graphs. We evaluated our
algorithms on nine real-word datasets. The experimental results show that our approach is efficient and
scalable.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In the article, ‘‘Is Graph Theory the Key to Understanding Big
Data?’’ [1], the authors show how graph theory can be precious as
a tool to organize and understand massive data. Flexible and open
structures, graphs are natural and practical solutions for at least
two of the Vs ofmassive data: Velocity for its streaming or dynamic
nature and Variety for its different forms (heterogeneity) [2,3].

Graphs are a well-known mathematical concept that proved
its flexibility and efficiency as a modeling tool in various domains
and applications [4]. A graph is a collection of vertices connected
by edges. Both vertices and edges can piggyback information
called labels or attributes. Appreciated by their flexibility and
their graphical representation, graphs have been used to formalize
problems since the work of Euler on the problem of the Seven

∗ Corresponding author.
E-mail address: hamida.seba@univ-lyon1.fr (H. Seba).

Bridges of Königsberg [5]. Representing data with graphs dates
back to 1969 with the work of Bachman on the Network database
model [6] but graphs have been overshadowed by the powerful
relational modeling paradigm. Today, graphs come back and are
projected to the frontend as a data modeling tool with several
propositions of graph-based database management systems [7]
and graph query languages [8]. This can be widely explained by
the emergence of services and applications that rely on structured
data such as social networks, crime detection and genoms. But, it
is also related to the issues and challenges raised by massive data
and for which graphs seem to be a viable solution.

Using graphs as means of representing data cannot be
successful without developing effective ways to search and query
this kind of data. However, querying massive graph data is a
challenging issue. In fact, themain task involved in querying graph
data is subgraph isomorphism search which is an NP-complete
problem [9]. The subgraph isomorphism problem is the problem of
finding the embedding of a query graph into a target graph called
a data graph. The data graph is generally larger than the query
and may contain several occurrences of it. The objective is then to

http://dx.doi.org/10.1016/j.future.2017.04.005
0167-739X/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2017.04.005
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2017.04.005&domain=pdf
mailto:hamida.seba@univ-lyon1.fr
http://dx.doi.org/10.1016/j.future.2017.04.005


64 C. Nabti, H. Seba / Future Generation Computer Systems 74 (2017) 63–75

enumerate all the occurrences of the query graph within the data
graph in a reasonable time. Fig. 1 depicts an example where the
data graph contains two occurrences of the query graph. Given a
query graph Q and a data graph G, a straightforward solution to
enumerating the occurrences of Q into G is to directly compare
the vertices of the query with the vertices of the data graph. This
comparison constructs a search tree where each vertex of the
tree corresponds to a mapping between a vertex from the query
with a vertex from the data graph. Fig. 2 presents a part of the
obtained recursion tree for the query graph and the data graph of
Fig. 1. Exploring this recursing tree is the Achilles heel of subgraph
isomorphism search. So, existing backtracking based solutions do
not explore the whole tree, but use filtering methods that prune
unpromising branches of the tree. Nevertheless, evenwith pruning
functions, this method rises two main challenges:

• It is memory consuming: besides storing the data graph which
can have a significant size, exploring the search tree has a high
memory consumption and involves complex data structures to
support backtracking.
• It is time consuming: backtracking and testing the possible

mappings between vertices has a high computational cost. It
is exponential in function of the number of vertices in the
involved graphs.
In this paper, we target the above challenges and propose a

new framework that handles efficiently the problem of querying
graph data with subgraph isomorphism search. Our solution aims
to deal with subgraph isomorphism challenges in massive graph
databases through graph compression. Of course, compression
in itself is not a new idea. It is omnipresent in our digital
world. In fact, compression is used almost every where especially
in data transmission. The goal is usually to reduce the space
occupied by data even if this means losing some information when
decompressing the data. Compression algorithms are inextricably
linked to decompression ones becauseweneed to decompress data
to be able to use it. However, the era of massive data is changing
usages. The goal of compression has evolved. It goeswithout saying
that we always want to compact data but we also want to be able
to use the data in its compact format, i.e., without decompression.
For graph data, thismeans less space for storing the graphs but also
acceptable time processing of the compressed graphs. This work
investigates this issue for the problem of subgraph isomorphism
search. More precisely, we make the following contributions:

1. A simple compressed representation of both the data and the
query graphs. We tackle the memory and the computational
challenges by compressing the graphs. Compression not only
reduces the amount of memory needed to store large graph
data but also the time needed to process them because they
are simpler and smaller. In fact, our compression reduces the
number of vertices and edges of the graphs yielding a reduction
of the search tree proportionally to the compression rate.

2. An intuitive subgraph isomorphism enumerating algorithm that
works on the compressed graphs without decompressing them.

3. Performance studies on nine real datasets.We conduct extensive
performance studies using nine real-world graphs with var-
ious graph properties. The experimental results demonstrate
that our proposed algorithms can handle large graphs with sig-
nificant performance on both computational time and storage
space.

A preliminary version of the current paper appeared in [10]. The
current paper has been significantly extended with respect to the
underlying methodology and the experimental evaluation based
on IoTBD 2016 selection.

2. Background

2.1. Preliminaries

We consider data graphs defined as simple vertex labeled
graphs. Simple graphs are graphs with no edges involving a single
vertex.

Definition 1. A data graph G is a 3-tuple G = (V , E, ℓ), where V is
a set of vertices, E ⊆ V×V is a set of edges connecting the vertices,
ℓ : V → Σ is a function labeling the vertices where Σ is the sets
of labels that can appear on the vertices.

In this paper, the notation G = (V , E), with ℓ omitted means
that we actually do not need the labels of the vertices but just their
identifiers (i.e., indexes).

An undirected edge between vertices u and v is denoted
indifferently by (u, v) or (v, u). For each v ∈ V , d(v) denotes the
degree of v, i.e., the number of neighbors of v, where a neighbor
is a vertex adjacent to v. The label or set of labels of a vertex v is
given by ℓ(v).

A graph that is contained in another graph is called a subgraph
and can be defined as follows:

Definition 2. A graph G1 = (V1, E1, fV1) is a subgraph of a graph
G2 = (V2, E2, fV2), if V1 ⊆ V2, E1 ⊆ E2, fV1(x) = fV2(x)∀x ∈ V1.

Graph isomorphism is defined as follows:

Definition 3. A graph G1 = (V1, E1, fV1) and a graph G2 =

(V2, E2, fV2) are said to be isomorphic, if there exists a bijective
function h : V1 → V2 such that the following conditions hold:

1. ∀x ∈ V1 : fV1(x) = fV2(h(x))
2. ∀(x, y) ∈ E1 : (h(x), h(y)) ∈ E2
3. ∀(h(x), h(y)) ∈ E2 : (x, y) ∈ E1.

Given a query graph Q and a data graph G, the subgraph
isomorphism search of Q in G consists to find all the subgraphs of
G that are isomorphic to Q .

2.2. Related work

In this section, we review themain algorithms proposed to deal
with subgraph isomorphism search and point-out themechanisms
proposed to scale to large graphs. We also present the approaches
that deal with graph compression.

2.2.1. Subgraph isomorphism search algorithms
Searching in graphs is an important problem studied in many

domains related to classification, information retrieval,mining and
pattern recognition. Subgraph isomorphism search that consists
to find all the occurrences of a subgraph into a larger graph is
a basic task in graph search. Subgraph isomorphism search is an
NP-complete problem that has been extensively studied [11–13,8,
14,15]. We will not describe all the existing solutions. We rather
focus on the basic and the most recent ones. Detailed algorithms
of the most known solutions are nicely surveyed and compared in
several papers [16–18]. In our description, wemainly focus on how
these algorithms deal with scalability, i.e., massive graphs.

Given a query graphQ and a data graphG, searching forQ inG is
a complex task that involves a total or a partial traversal of a search
tree (see Fig. 2 for an example). In the search tree, each vertex at
level i maps a vertex of the query to a vertex of the data graph.
Each path from the root to a leaf in the search-tree represents
either a unsuccessful mapping between the query and a subgraph
that have been dropped by the algorithm or a successful one that
corresponds to a subgraph that is isomorphic to the query. Dealing



Download English Version:

https://daneshyari.com/en/article/4950359

Download Persian Version:

https://daneshyari.com/article/4950359

Daneshyari.com

https://daneshyari.com/en/article/4950359
https://daneshyari.com/article/4950359
https://daneshyari.com

