Future Generation Computer Systems 74 (2017) 199-207

Contents lists available at ScienceDirect 4
FIGICIS!
Future Generation Computer Systems =
journal homepage: www.elsevier.com/locate/fgcs e

Optimized dependent file fetch middleware in transparent computing @ CrossMatk

platform

Kehua Guo®"*, Yayuan Tang?, Jianhua Ma¢, Yaoxue Zhang?

2School of Information Science and Engineering, Central South University, Changsha, China
b Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education (Nanjing University of Science and

Technology), Nanjing, China

¢ Faculty of Computer and Information Sciences, Hosei University, Tokyo, Japan

HIGHLIGHTS

A middleware solution is proposed to optimize file fetch process in transparent computing (TC) environment.

We propose a heuristic and greedy (HG) algorithm.

]
e The method solves the concurrency control problem when the file fetch is required for the multiple clients.
[]
[]

HG algorithm can reduce overall file fetch time roughly by 50% in the best cases compared with the time cost of traditional approaches.

ARTICLE INFO

ABSTRACT

Article history:

Received 24 August 2015

Received in revised form

17 September 2015

Accepted 14 October 2015
Available online 17 November 2015

Keywords:

Middleware

File dependency

File fetch
Heterogeneous network
Transparent computing

A middleware is proposed to optimize file fetch process in transparent computing (TC) platform. A single
TC server will receive file requests of large scale distributed operating systems, applications or user data
from multiple clients. In consideration of limited size of server’s memory and the dependency among
files, this work proposes a middleware to provide a file fetch sequence satisfying: (1) each client, upon
receiving any file, is able to directly load it without waiting for pre-required files (i.e. “receive and load”);
and (2) the server is able to achieve optimization in reducing overall file fetch time cost. The paper firstly
addresses the features of valid file fetch sequence generating problem in the middleware. The method
solves the concurrency control problem when the file fetch is required for the multiple clients. Then it
explores the methods to determine time cost for file fetch sequence. Based on the established model, we
propose a heuristic and greedy (HG) algorithm. According to the simulation results, we conclude that HG
algorithm is able to reduce overall file fetch time roughly by 50% in the best cases compared with the time
cost of traditional approaches.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the past decades, the computing pattern has gradually
evolved from the desktop terminals to heterogeneous distributed
computing. Researchers applied heterogeneous distributed com-
puting to various research areas, including software adaptation
[1,2], E-Commerce [3] and heterogeneous multimedia big data re-
trieval [4], and proposed many achievements. Traditional view
of computing is hardware or software-centered, now it is slowly
turning into service-oriented [5]. Transparent computing [6,7] is

* Corresponding author at: School of Information Science and Engineering,
Central South University, Changsha, China.
E-mail address: guokehua@csu.edu.cn (K. Guo).

http://dx.doi.org/10.1016/j.future.2015.10.010
0167-739X/© 2015 Elsevier B.V. All rights reserved.

a concrete application form of heterogeneous distributed comput-
ing, and has become an emerging computing pattern which can
prevent users from worrying about the heterogeneous software
details (e.g. operating systems (OSes), supporting tools and appli-
cations (Apps) which are stored and managed in centric servers),
and can satisfy their service needs through simple interfaces sup-
ported by heterogeneous distributed devices. That is to say, the
client will not store any OSes and Apps locally. Instead, they will
be downloaded from the server according to user’s request in the
client interface. The goal of this computing pattern is to reduce
the burden of the server and improve the system maintainability.
Therefore, users simply just accomplish their tasks on their data
and do not care about the machine specifics and management de-
tails [8].

In transparent computing platform, one server is usually re-
sponsible for the file transmission requests from multiple het-

http://dx.doi.org/10.1016/j.future.2015.10.010
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2015.10.010&domain=pdf
mailto:guokehua@csu.edu.cn
http://dx.doi.org/10.1016/j.future.2015.10.010

200 K. Guo et al. / Future Generation Computer Systems 74 (2017) 199-207

erogeneous distributed clients. The transmission process between
server and clients has a very important place in the research of
transparent computing. For the TC clients, requesting various files
to support applications and OS is a very common job. Due to the
diversity of files requested (such as operation system, application
or user data), file transmission in TC has encountered a special
challenge—the dependency among these files. In many cases, to
successfully run heterogeneous applications or operating systems,
files must be loaded in a specific order. For example, when a voice-
text input application is requested by a client, the client must firstly
load the voice input/output module and then the voice-text trans-
lation module. If the voice-text translation module is firstly re-
ceived by the client, it will be held until the voice input/output
module is transferred. In another case, a client requests a text-voice
reader application, the dependency order could be reversed. All
the files are fetched from the server, when multiple heterogeneous
clients request various files. It is an important issue to generate a
reasonable file fetch and transmission sequence at the server.

To solve the file dependency problem, a middleware can be
developed to schedule the fetch sequence, which will bring critical
influence upon heterogeneous distributed clients concerning the
Quality of Service (QoS) and also improve the efficiency of TC
servers. On the one hand, the client is greatly expected that the files
can be loaded immediately after the transmission is completed,
instead of being held due to some uncompleted transmissions of
those files it relies on. If too many files are held at the same time,
the client will waste time and hardware resources, which will
lead to huge drop in the performance, especially to some devices
with the limited computing ability and memory size. On the other
hand, multiple heterogeneous distributed clients may request the
same files from the single server. It will waste considerable time to
repetitively fetch(search and read) the same files for each clients. In
consideration of the fact that there are huge overlap among users’
requests for the files in TC (e.g. OS files), saving file fetch time
will definitely promote the server’s performance. In our model,
with a file fetch sequence and a fixed size memory buffer in the
middleware, the best case expected is to fetch each identical file
one time and send it to multiple clients. Thus, the server should
provide an optimized file fetch sequence which satisfying: (1) each
client, upon receiving any file, can directly load it without waiting
for pre-required files (i.e. “receive and load”); and (2) the server
can achieve optimization in reducing overall file fetch time cost.
These requirements have become new challenges in the area of file
transmission in transparent computing platform.

In recent years, the research of TC has been more and more pop-
ular. Our research group is performing some important research is-
sues. In cooperation with scholars from other universities, we are
constructing an optimized algorithm to dependent file fetch mid-
dleware in transparent computing platform. This paper proposes
the key definitions and features of the dependent file fetch prob-
lem, describes a heuristic and greedy algorithm in the middleware,
and finally evaluates the performance of the proposed algorithm.

The rest of this paper is organized as follows. Section 2 explains
the related work of transparent computing and file transmission
approaches, Section 3 describes the system model and problem
description, and Section 4 presents the solution for the problem,
including all the related information, algorithm description and
complexity analysis. Section 5 provides performance evaluation
and experimental results. Section 6 concludes our work and points
out the future work.

2. Related works
Transparent computing is a computing paradigm to provide

transparent services for users [9]. In TC architecture, users only
need to care about the result and quality of the services they

Client
Terminal =

uss,
B
5‘»...; =

Access Protocol

network

TransOS Server

$ $ $

Linux Windows Android

Apps Apps Apps

Linux Windows Android
User Data

Fig. 1. Transparent computing architecture.

want, and do not have to pay attention to the details of the
Apps in system. Therefore, users are able to freely access the
services on network across heterogeneous software and hardware
platforms [10]. The detailed illustration of TC architecture is shown
in Fig. 1.

As shown in Fig. 1, a TC based system mainly consists of two
units. One is TransOS (Transparent Operating System) server. Tran-
sOS server is a network server which stores OSes, Apps and user
data. Computation and storage are spatio-temporally separated.
When users request some services, the suitable OSes and Apps will
be dynamically dispatched from the TransOS server to run on the
client terminal in a buffer-enabled block or streaming way. The
other is client terminal. In TC paradigm, the client terminal can be
diverse and light-weighted; it only needs to store the underlying
Basic Input Output System (BIOS) and a small fraction of protocol
and management program. For this reason, the client can be se-
curely and easily managed and maintained. Therefore, in TC archi-
tecture, computation, storage and management are separated. The
users can access the services through cross-terminal and cross-0S
operations [11].

The concept of TC was proposed in 2004, Ref. [12] gave the
concept, architecture and example of transparent computing. In
the past decade, based on the theory of TC, researchers proposed
some representative architectures and developed demonstration
applications. Ref. [13] developed the client terminal and related
systems according to their TC study and proposed a novel Meta OS
approach for streaming programs named 4VP. Ref. [14] proposed
the performance modeling and analysis algorithm of the booting
process in TC environment. In 2012, Ref. [15] reported the work on
building a virtual machine-based network storage system for TC
platform.

From 2007, a cooperated research team was established with
Intel Corporation by combining a new-generation BIOS named
UEFI (Unified Extensible Firmware Interface) with TC architec-
ture [16,17], many applications were proposed based on this com-
bination platform. Some research groups have developed TransOS
clients supporting various client hardware architectures (e.g. x86,
ARM and MIPS) through UEFI [7].

For the transmission protocol, Kuang et al. developed a novel
network storage access protocol for TC named NSAP [18]. For the
virtualization technology, Refs. [6,10] presented a separating com-
putation and storage strategy. In addition, Refs. [7,19] described
the relationship between transparent computing and cloud com-
puting.

Download English Version:

https://daneshyari.com/en/article/4950372

Download Persian Version:

https://daneshyari.com/article/4950372

Daneshyari.com

https://daneshyari.com/en/article/4950372
https://daneshyari.com/article/4950372
https://daneshyari.com

