
Future Generation Computer Systems 74 (2017) 232–240

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Research and implementation of a distributed transaction
processing middleware
Jianjiang Li a, Qian Ge a, Jie Wu b, Yue Li a,∗, Xiaolei Yang a, Zhanning Ma a

a Department of Computer Science and Technology, University of Science and Technology Beijing, China
b Department of Computer and Information Sciences, Temple University, USA

h i g h l i g h t s

• A middleware-level distributed system is complemented for improving the performance of transaction processing.
• By making partition extension to Berkeley DB, this paper overcomes the disadvantage of non-support parallel writing across multiple nodes.
• Monitoring nodes of the distributed database system by the middleware ensures correct execution and migration of transaction.

a r t i c l e i n f o

Article history:
Received 1 September 2015
Received in revised form
8 January 2016
Accepted 30 January 2016
Available online 8 February 2016

Keywords:
Distributed system
Transaction processing
Middleware
Partition replication body

a b s t r a c t

Currently, increasingly transactional requests require high-performance transaction processing systems
as support. The performance of a distributed transaction processing system is superior to that of
traditional single-node transaction processing system, and the characteristic of multi-node determines
that distributed transaction processing systems should pay more attention to availability. For example,
in traditional single-node systems, the performance of Berkeley DB is high, but its shortcoming of not
supporting parallel writing across multiple nodes is weakening its availability and scalability in the
distributed environment. This paper has designed and implemented a middleware-level distributed
transaction processing system called POST, including a distributed database system called POSTBOX
which is based on Berkeley DB and data partition, and a distributed transaction processing middleware
called POSTMAN. POSTBOX inherits the availability of highly available Berkeley DB, and expands it with
data partition. By Partition Replication Body (PRB), POSTBOX overcomes the native weakness of highly
available Berkeley DB, which indicates that highly available Berkeley DB does not support parallel writing
across multiple nodes; POSTMAN is a middleware adapting PRB. POSTMAN monitors POSTBOX in real-
time via Partition Replication Body State Array (PRBSA), and ensures the correctness of transaction
processing and transactions migration in the case of node failure. The actual test results show that POST
possesses high availability, and has an obvious improvement of write performance compared with highly
available Berkeley DB.

© 2016 Published by Elsevier B.V.

1. Introduction

Historically, OnLine Transaction Processing (OLTP) [1] refers
to submitting traditional transactions such as ordering goods or
transferring payments to the OLTP system, based on Relational
DataBase Management System (RDBMS). With the rapid develop-
ment of Internet and Internet application, transaction occurs some
changes, one of the most significant features of which is the ex-

∗ Corresponding author.
E-mail addresses: lijianjiang@ustb.edu.cn (J. Li), greenday0925@gmail.com

(Q. Ge), jiewu@temple.edu (J. Wu), liyuepkoneal@outlook.com (Y. Li),
chinayangxiaolei@163.com (X. Yang), ningzhanma@163.com (Z. Ma).

plosive growth of transaction throughput [2]. For instance, excel-
lentmulti-user game based on theweb can produce a large amount
of interactions within one second, and the growth of smart phone
use and other mobile terminals has given rise to the development
of mobile transaction. These Internet applications produce more
transaction requests than the capability of the traditional OLTP sys-
tem, and it is difficult for RDBMS to deal with high concurrent
transaction requests. In addition, RDBMS cannot support expan-
sion without offline and distribution very well. For example, SQL
query [3] of a table with massive records in a relational database
management system will cost an amount of time. Although it can
be solved by data segmentation and table segmentation, it also
increases the difficulties of programming, data backup, database

http://dx.doi.org/10.1016/j.future.2016.01.021
0167-739X/© 2016 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.future.2016.01.021
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2016.01.021&domain=pdf
mailto:lijianjiang@ustb.edu.cn
mailto:greenday0925@gmail.com
mailto:jiewu@temple.edu
mailto:liyuepkoneal@outlook.com
mailto:chinayangxiaolei@163.com
mailto:ningzhanma@163.com
http://dx.doi.org/10.1016/j.future.2016.01.021


J. Li et al. / Future Generation Computer Systems 74 (2017) 232–240 233

expansion and some other issues. In order to enhance the perfor-
mance of system, themost direct solution is to purchase amachine
which has stronger performance, but its higher cost is often pro-
hibitive for most enterprises.

Distributing data and loading it to multiple nodes by using
distributed database systems [4,5] is an effective method to
improve the performance of the transaction processing system.
Currently, application and deployment of a distributed system
are becoming known more and more widely, especially in the
background of expansion of cloud computing and big data [6,7].
Cloud computing [8,9] requires using low-cost servers instead
of expensive machines as a hardware infrastructure platform,
and obtains high availability and scalability through redundancy
between nodes. Berkeley DB [10] is a powerful key/value database
engine: its high availability version (referred to highly available
Berkeley DB) provides a distributed database solution based on
master–slave replication, with high availability and better reading
scalability. Berkeley DB provides full ACID [11] transactional
guarantees. This ensures that highly available Berkeley DB can
be applied not only to lower requirements for data consistency
(for example, state updates of social network users do not need
to immediately synchronize to the entire application), but also to
higher requirements for data consistency, such as financial systems
or order processing systems, because these systems are intolerable
to abandoning transaction and data consistency [12].

Highly available Berkeley DB supports high availability and
read scalability, it does not have write scalability, that is to say, it
does not support parallel write cross multiple nodes. In addition,
compared to building a centralized or client/server system, it is
quite difficult to build a truly distributed database system, because
distributed database systems may have multi-node failures and
problemswith security of data storing [13,14], inter-node commu-
nication is relatively complex. Middleware is an effective way to
solve the fault tolerance of distributed database systems, commu-
nication difficulties, and other problems. An effective distributed
transaction processing middleware [15–18] can effectively man-
age a distributed database system, and reduce the programming
difficulties.

In response to these problems, this paper designs and im-
plements a distributed transaction processing middleware sys-
tem called POST, which consists of a distributed database system
called POSTBOX based on Berkeley DB and data partition, and a
distributed transaction processing middleware called POSTMAN.
POSTBOX makes partition extension to highly available Berkeley
DB, and overcomes the problem that Berkeley DB does not support
parallel write cross multiple nodes via Partition Replication Body
(PRB). POSTMAN, which is deployed on top of POSTBOX, and fully
adapted to the PRB of POSTBOX, can provide an access interface
for the interaction application and POSTBOX. POSTMAN monitors
the status of each node of POSTBOX by Partition Replication Body
State Array (PRBSA), and ensures correct execution and migration
of transaction when a node fails through an efficient scheduling
mechanism.

The rest of this paper is organized as follows. Section 2 describes
the highly available of Berkeley DB. Section 3 describes the system
architecture of POST, and introduces the distributed database sys-
tem called POSTBOX based on Berkeley DB and data partition, and
distributed transaction processing middleware called POSTMAN.
Section 4 provides analysis of the availability and performance of
the POST system. Section 5 provides experimental results and anal-
yses. Section 6 introduces related work. Finally, this paper makes
a summary in Section 7.

2. High availability of Berkeley DB

Berkeley DB achieves high availability by the replication group.
Replication group is a collection of Berkeley DB environments

Fig. 1. Replication stream of highly available Berkeley DB.

distributed on different physical nodes. Nodes in replication group
have the following three states:

(1) Master: ‘‘Master node’’ is chosen by a simple majority of
electable nodes. It can process both read and write transac-
tions.

(2) Replica: ‘‘Replica node’’ is in communication with a Master
node via a replication stream which is used to keep track of
changes made at the Master node. It only supports read trans-
actions.

(3) Detached: ‘‘Detached node’’ has been shut down. It is still a
member of the replication group, but is not an active node. A
node that is not in the detached state is also referred to as being
active.

There is only one Master node in the replication group. The
Master node can read andwrite data, and the Replica node can only
read data. The Master node and Replica node both belong to active
nodes in the replication group. One node in a detached statemeans
that this node is not an active node, and it is still a member of a
replication group. The following introduces a replication group in
two aspects of the replication stream and generation mechanism
of the Master node.

2.1. Replication stream

Write transactions executed on a Master node are replicated
to Replica nodes by a logical replication stream established on
a TCP/IP connection. This connection is a dedicated connection
between a Master node and each Replica node. Replication stream
contains some descriptions of the logical changes. These logical
operations are computed from log entries of the current Master
node and are replayed at each Replica node by an efficient internal
replay mechanism.

As shown in Fig. 1, there are four nodes in a replication group,
including a Master node and three Replica nodes. The Master node
has completed eight write operations (the log entry is represented
by awhite and gray triangle), and because the progress of the three
Replica nodes is behind the Master node, the Master node sends
log entries to all Replica nodes by a replication stream (dashed line
with an arrow), so that all Replica nodes can replay according to
the log entry to keep up with the progress of the Master node.
In a replication group, Replica nodes are distributed to multiple
physical machines, so this can ensure that a single failure cannot
affect other nodes.

2.2. The generation process of master node

In a replication group, only the Master node has write access.
When it is shut down, it is essential for the replication group to
regenerate a new Master node. The generation of a Master node is
influenced by two factors: the log progress and the priority of the



Download English Version:

https://daneshyari.com/en/article/4950375

Download Persian Version:

https://daneshyari.com/article/4950375

Daneshyari.com

https://daneshyari.com/en/article/4950375
https://daneshyari.com/article/4950375
https://daneshyari.com

