
Future Generation Computer Systems () –

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Revisiting swapping in mobile systems with SwapBench
Xiao Zhu a,b, Duo Liu a,b,∗, Liang Liang c,∗∗, Kan Zhong a,b, Linbo Long a,b, Meikang Qiu d,
Zili Shao e, Edwin H.-M. Sha a,b

a Key Laboratory of Dependable Service Computing in Cyber Physical Society (Chongqing University), Ministry of Education, China
b College of Computer Science, Chongqing University, Chongqing, China
c College of Communication Engineering, Chongqing University, China
d Computer Science Department, Pace University, USA
e Department of Computing, The Hong Kong Polytechnic University, Hong Kong

h i g h l i g h t s

• An evaluation framework is proposed to appraise different swapping schemes.
• SwapBench is implemented on Android platform and validated with micro benchmark.
• Evaluation of application launch time with different swap schemes is given.
• Evaluation of application switch delay with different swap schemes is given.
• The impact of swap size and application memory access feature is discussed.

a r t i c l e i n f o

Article history:
Received 16 September 2015
Received in revised form
29 April 2016
Accepted 22 May 2016
Available online xxxx

Keywords:
Swapping
Mobile
User experience
Evaluation

a b s t r a c t

Mobile systems such as smartphones and tablets are re-adopting swapping – a mature but rarely used
OS feature – to extend memory capacity without adding more DRAM, especially low-end devices. This
resurgence of swapping in mobile systems has inspired both traditional ‘‘off-the-rack’’ schemes and new
approaches based on compression and new hardware. Their vastly different designs, however, make
them difficult for system designers to measure, compare and revise. In this paper, we first propose
an evaluation framework, SwapBench, to appraise swap schemes and focus on two important but
overlooked metrics: application launch and switch. And cross-validation with microbenchmarks shows
that SwapBench is accurate. Then, we present the first comprehensive evaluation from three dimensions:
system architecture, application launch time and application switch delays, to understand and summarize
the impacts of swapping in mobile systems. Finally, based on the findings from SwapBench, we give our
conclusion and suggestions of different approaches to swapping in mobile systems.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Mobile applications – which were lightweight – are becoming
increasingly heavy [1], because of their rich functionality made
possible by recent high-performance mobile processors and large
embedded low power DRAM. Althoughmainmemory capacity has
been growing inmobile devices,1 it is difficult (if not impossible) to

∗ Corresponding author at: College of Computer Science, Chongqing University,
Chongqing, China.
∗∗ Corresponding author.

E-mail addresses: liuduo@cqu.edu.cn (D. Liu), liangliang@cqu.edu.cn (L. Liang).
1 For example, the recent Google Nexus 6 smartphone is equipped with 3 GB of

DRAM. Specs at http://www.google.com/nexus/6.

always satisfy the increasing memory requirements from systems
and apps. The situation is worse on low-end devices, which are
often seen in developing markets and are usually equipped with
512MBor smallermainmemory for cost reasons.When the system
is undermemory pressure, running applicationswill be terminated
to make room for new allocations. This design deteriorates user
experience but is found in most major mobile OSes, including
Android [2,3] and iOS. An important rationale behind this design
decision is the lack of a (high-performance) swap space.

Almost all major mobile OSes, including Android and iOS,
support or could be easily modified to support swapping, and
adding a swap space is an effective (though probably not efficient)
solution to reduce unexpected process terminations. Carefully
chosen memory pages could be moved out temporarily to stable

http://dx.doi.org/10.1016/j.future.2016.05.026
0167-739X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2016.05.026
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:liuduo@cqu.edu.cn
mailto:liangliang@cqu.edu.cn
http://www.google.com/nexus/6
http://dx.doi.org/10.1016/j.future.2016.05.026

2 X. Zhu et al. / Future Generation Computer Systems () –

Fig. 1. The number of process terminations with flash-based swapping when
running ten popular applications on aNexus 5 smartphone undermemory pressure.
Even a small (64 MB) swap space can avoid most terminations.

storage (e.g., flash, RAM disk) to satisfy new allocations when
the system is lacking for free memory. As shown in Fig. 1, when
running a list of ten popular applications (see Section 4 for details)
on a Nexus 5 smartphone,2 the number of processes terminated
under memory pressure drops significantly with a flash-backed
swap space.

However, a naive adoption of swapping in mobile systems will
cause severe performance degradation due to poor performance
of flash memory, especially when the swap space is backed by
an SD card [4]. Mainstream systems, including Android and iOS,
deliberately avoided swapping – even at the cost of terminating
running applications [2,5] – to ensure a smooth user experience.

Despite these warnings on degraded performance of using
swapping in mobile systems, there have been active attempts
by enthusiasts to enable it manually [6] or using applications
[7–10]. On the vendor and academia sides, a recent trend is to
customize swapping specifically for mobile systems to have bet-
ter performance, using compression (e.g., zRAM [3], which is in-
cluded in recent Android releases) or emerging hardware such as
byte-addressable non-volatile memories (NVRAM) [5].

Although the implementation of traditional swapping inmobile
OSes are almost identical to that in server/desktop systems, swap-
ping has different and sometimes more profound implications for
mobile applications. Moreover, the implementation of recent pro-
posals has diverged a lot from traditional swapping. For exam-
ple, NVM-Swap [5] completely eliminates I/O andmakes swapping
pure memcpys; zRAM uses compression to ‘‘swap to zRAM’’, which
affects not only performance, but also the device’s energy behavior.
This makes it more difficult to compare and revise different swap-
ping schemes: I/O numbers are not an accurate metric any more.
Without appropriate metrics and tools, the performance charac-
teristics and impacts on system design of these different swapping
schemes remain largely unknown to today’smobile systemdesign-
ers.

In this paper, we first propose a comprehensive evaluation
framework called SwapBench to appraise swapping schemes. Ex-
cept for application I/O performance during normal execution,
SwapBench focuses on measuring another two fundamental per-
formance metrics that will be affected by swapping the most: ap-
plication launch time and switch delay, which measure the time
needed to start an application and switch between multiple run-
ning applications, respectively. Not only swapping has significant
impact on the two metrics, but also they can directly determine
the system’s ‘‘smoothness’’ when the user interacts with multiple
applications. User experience is significantly affected by those fac-
tors [11,12]. Besides, in this paper, utilizing SwapBench, we eval-
uate the difference of application launch time and switch delays
with and without all the swap schemes and give a comprehensive
analysis based on our extensive experiments.

The main contributions of this paper are listed below:

2 Specs at http://www.google.com/nexus/5.

• We analyze different swapping schemes on architecture-wise
and propose a comprehensive evaluation framework called
SwapBench to appraise different swapping schemes. With
SwapBench, mobile system designers will be able to bench-
mark, compare and revise existing swap schemes.

• We implement SwapBench on Android platform and vali-
date the accuracy of SwapBench with microbenchmarks. With
SwapBench, (1) we explain the relationship between applica-
tion launch time and different swap schemes and give some
analysis; (2) we present the overall impacts on application
switch delays of different approaches to swapping in mobile
systems and analyze the reason behind.

• Besides, we discuss the factors that would impact application
switch delays including size of swap area, application memory
access feature (by application category).

In the rest of this paper, we first give an overview of existing
swapping schemes in Section 2, and then describe the design of
SwapBench in Section 3. Next, we give the methodology of our
evaluation in Section 4. Then, we discuss the preliminary results
about application launch time drew from SwapBench on evaluat-
ing different swapping schemes in Section 5. Then, we present the
evaluation and discussion of application switch delays in Section 6.
Finally, we give the related work in Section 7 and conclude the pa-
per in Section 8.

2. Swapping in mobile systems

The traditional meaning of ‘‘swapping’’ refers to copying a
whole process’ memory to some predefined stable storage area
known as the ‘‘swap area’’ to free up memory space when the sys-
tem is under memory pressure [13]. In this way, memory space
is ‘‘extended’’ because swapping happens without any application
involvement. With virtual memory, however, modern OSes imple-
ment swapping in a more flexible way: swap memory pages, in-
stead of the whole process’ memory to disk.

Swapping is amature technique and has been around for server
and desktop systems for a long time. But it is relatively rare to see
it in mobile systems, due to severe performance overhead caused
by flash memory [4,14]. There is a recent trend of re-adopting
swapping inmobile devices,made popular by smartphone applica-
tions [7–10], popular guide from smartphone forums [6], compres-
sion based approaches such as zRAM [3]which is shippedwith new
Android releases, as well as emerging hardware based schemes
such as NVM-Swap [5].

In this section, we first give an overview on different swapping
techniques that are available for today’s mobile devices, and then
discuss their impacts on system architecture. Throughout the
paper we use Android as an example to discuss various swapping
schemes as it is arguably the most popular mobile OS so far. Our
evaluation will also be based on the swapping schemes that are
described in this section.

2.1. ‘‘Off-the-rack’’ solutions

Flash based swap. For Linux based systems (e.g., Android based
smartphones and tablets), swapping has long been a built-in but
disabled OS feature. The only difference between swapping in a
mobile device and a server is that usually internal flash storage
or external SD card is the only available device to serve as the
swap area. Memory pages are moved between DRAM and flash, as
shown in Fig. 2(a). The major drawback is that swapping to flash
might severely degrade system performance, due to poor write
performance found in integrated internal flash, and especially SD
cards (which are usually much slower than the internal flash
storage) [4]. Besides, swapping to flash might also shorten flash’s
lifetime.

http://www.google.com/nexus/5

Download English Version:

https://daneshyari.com/en/article/4950378

Download Persian Version:

https://daneshyari.com/article/4950378

Daneshyari.com

https://daneshyari.com/en/article/4950378
https://daneshyari.com/article/4950378
https://daneshyari.com

