Future Generation Computer Systems I (1IN) IRE-100

Contents lists available at ScienceDirect 2
FGICIS!
Future Generation Computer Systems
journal homepage: www.elsevier.com/locate/fgcs —

Cloud security engineering: Early stages of SDLC

Shadi A. Aljawarneh®*, Ali Alawneh", Reem Jaradat ¢

2 Software Engineering Department Jordan University of Science and Technology, Irbid, Jordan
b MIS & CIS - Faculty of IT, Philadelphia University, Jordan

¢ Reem Jaradat, Faculty of IT, Isra University, Jordan

ARTICLE INFO

ABSTRACT

Article history:

Received 1 July 2016
Received in revised form
21 August 2016
Accepted 4 October 2016
Available online xxxx

Keywords:

Software engineering
Cloud security

SaaS

Architectural decisions
Applicability

Security vulnerabilities

Security vulnerabilities and defects are results of poorly constructed software that can lead to easy
exploitation by the cyber criminals. A large number of Cloud software systems are facing security threats,
and even the sophisticated security tools and mechanisms are not able to detect it. Such prevailing
problem necessitates the monitoring and controlling of the software development process and its
maintenance. Security is considered to be one of the nonfunctional requirements that have significant
effect on the architectural designing of the Cloud Software as a Service (SaaS). In addition, there is
prevalence of differential views between the two software engineering concepts, i.e., conventional and
contemporary and then this presents a significant challenge for the software development team to deal
with security at the implementation and maintenance stage of the SDLC. Thus, we have discussed a real
world case study includes 103 failed real cases that were generated manually or automatically by real
applications through various testing techniques and we have illustrated some preliminary results. The
evaluation results showed appearance of a significant number of security vulnerabilities in the early
stages of Cloud Software/Service Development Life Cycle (CSDLC). Hence, this needs to be maintained
in advance. Based on such results, this paper presents a generic framework to deal with such security at
the early stages of the CSDLC. This framework aims at adding an extra security level at the early stages of
the CSDLC, which has been further illustrated by a case study showing the applicability of the framework.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Since the last decade, the software engineering field has
witnessed software architecture to be the most researched topics
of all times. Many researchers have talked off the fundamental keys
to software architecture is that the architectural decisions [1-3].
Cloud software architecture has evolved into a decision-centered
perspective from a structural representation [4].

The Software as a Service (SaaS) defines architectural design
as an identifying parameter for the Cloud service sub-services and
the framework for the control and communication of sub-services.
At the early stage of the service design process, the architectural
design is performed taking into consideration the relationship
between the final service specification and design processes [5].

Furthermore, the service goal at the analysis phase can be met
by such noble architecture that provides the essential functional

* Corresponding author.
E-mail addresses: saaljawarneh@just.edu.jo (S.A. Aljawarneh),
aalawneh@philadelphia.edu.jo (A. Alawneh).

http://dx.doi.org/10.1016/j.future.2016.10.005
0167-739X/© 2016 Elsevier B.V. All rights reserved.

requirements. This assists in detecting and avoiding the security
vulnerabilities at the analysis phase. When the architectural design
reaches the implementation phase, the service designer is able to
decide the functional requirements involving a security technique.

Toresist the cyber security attacks, the designers and customers
need to work in collaboration. To bring out the stakeholders’ per-
spective, a development team was built with the assistance of the
agile methods. Each individual perspective can result in delivery
of a potential solution [5-7]. However, architectural conflict might
result between the security and availability, making security set-
ting a difficult process, particularly at the implementation and de-
ployment phases [5,7].

The architectural design of SaaS is a creative process, which
varies depending on the type of service being developed. For
example, the online payment service process differs from that
of the online learning service, since security as non-functional
requirements have different policies, standards and priorities [5,7].

However, there are certain standard decisions that span across
all designing processes, such as the decision in which all services
need to have a security kind at different levels. As a functional
requirement, the user needs to correctly, reliably and securely
authenticate its service.

http://dx.doi.org/10.1016/j.future.2016.10.005

Please cite this article in press as: S.A. Aljawarneh, etal., Cloud security engineering: Early stages of SDLC, Future Generation Computer Systems (2016),

http://dx.doi.org/10.1016/j.future.2016.10.005
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:saaljawarneh@just.edu.jo
mailto:aalawneh@philadelphia.edu.jo
http://dx.doi.org/10.1016/j.future.2016.10.005

2 S.A. Aljawarneh et al. / Future Generation Computer Systems 1 (1111) IIE-111

However, security requirement is one of the primary handlers
of architectural decision-making. Such nonfunctional requirement
is enhanced or impaired by architectural decisions (ADs). Including
or excluding parts of the architecture are considered to be
its limitations (for e.g., logical components or technologies).
Determination of effect of AD or affected architectural parts by a
security constraint is considered a difficult task. But at completion,
identification of the nonfunctional requirements becomes difficult
along with the forced constraints including all ADs.

Often the requirements engineering faces problems like partial
requirements specification stipulated without any analysis or the
one limited to the functional end-user requirements, which are dif-
ficult to prove [8]. Hence, the addition of security occurs at post-
development of the system [9]. However, security requirements
are found to be constraints on the system functions, operationaliz-
ing one or more security requirements [10].

Secure design consists of component security architecture,
physical, and logical. The physical security architecture is con-
cerned with data model specifications and structures (i.e., signa-
tures, messages, tables), rules (i.e., procedures, actions, conditions),
security mechanisms (i.e., encryption, access control, virus scan-
ning), security technology infrastructure, and time dependency
(i.e., time intervals, events). The logical security architecture speci-
fies confidentiality and integrity protection, domains, entities, and
security processing cycle (registration, login, and session manage-
ment). In addition, the security of the overall system can be affected
by the component integration into the system. Thus, analyzing the
component’s security, as well as security of each identified compo-
nent and all other components has been necessitated [11].

The topic of the paper is of interest especially at a time when
cloud computing is an evolving paradigm changing the way digital
files are stored shared and being accessed. The idea of proposing
a framework can support the elicitation of security requirements
at an early stage of the system development. In addition, such
framework can support the building of service architecture design
correctly and reliably. The proposed framework is a 5-level frame-
work. The framework addresses security at service level, storage
level, record level followed by hypervisor and datacenter levels.
On the whole the proposed framework consists of 17 components.
These components form the entire framework and are incorpo-
rated to be the components in each Cloud protection level.

The case study discusses the applicability of proposed Cloud
security framework. The security feature is added at early stages of
SDLC in the Cloud deployment. This paper is arranged as follows.
Section 2 discusses the related works. Section 3 discusses the
results of a real case study. Section 4 presents an overview of the
proposed framework. At last, Section 5 includes conclusion of the

paper.
2. Related work

In a previous study, the researchers proposed a method to
diminish the security requirements gap that combines software
engineering approaches with the principles of state-of-the-
art security engineering. This resulted in establishment of a
precise arrangement between the security engineering principles,
nonfunctional goal, and implementation of security architecture.
The method proposed designing of security architecture of a
system that is based on a small, precisely defined, and application-
specific trusted computing base. However, the Cloud systems and
services could not be fit by the proposed method. Therefore, if
the Cloud security requirements are not taken into consideration,
then the coming up with a precise definition of the Cloud system
architecture will not be possible.

Based on the key security considerations, another research
presented a practical security model by looking at the number of

infrastructure aspects of Cloud Computing, such as Utility, SaaS,
Platform and Managed Services, Web, Service commerce platforms
and Internet Integration. Such model can be applied as a proposed
shared security approach in the system development life cycle
(SDLC) focusing on the plan-built-run scope, with added security
at the implementation phase.

In another study conducted by Moradian and Hakansson [12]
highlighted the development of a multi-agent security support
system that helped in emergence of new systems along with
current system modifications. Therefore, the requirement goals are
verified and validated by the multi-agent system during different
SDLC phases. This whole process involves information searching
and mapping. Information searching with relation to the security
and project documents, such as threat list, security risks and
security vulnerabilities that is performed by the software agents.
Cases and mapping of attack patterns are used for comparing
and analyzing the system requirements. The multi-agent system
support integrity, confidentiality, availability, accountability, and
non-repudiation. Such a system enhanced the security and
supported the developers in every phase of SDLC, throughout the
engineering process. However, the security was not considered by
the developed system at the early stages of system development.

Mouratidis et al. [13] proposed an agent oriented software
methodology known as the Tropos by using principles of autho-
rization, access control, and availability. It is a security oriented
extension defining the security constraints as well as the secure
dependencies. The secure Tropos process allows model and design
validation.

3. Real test cases: data collection and analysis

In this study, we used a dataset collected by The Software
Assurance Reference Dataset (SARD). The Dataset source is
from https://samate.nist.gov/SARD/testsuite.php. The Software
Assurance Reference Dataset (SARD) provides a set of known
security flaws to its users, software security assurance tool
developers, and researchers. This enables the end users and
tool developers to evaluate their tools and test their methods,
respectively. These test cases (designs, source code, binaries, etc.)
are derived from all phases of the SDLC. The dataset consists of
test cases such as wild (production), academic (from students)
and synthetic (written to test or generated). The dataset also
encompasses a wide variety of possible vulnerabilities, platforms,
languages, and compilers. It is considered as a large-scale effort by
gathering test cases from many of the contributors.

We have collected and analyzed the dataset and we have taken
randomly a number of real test cases. Therefore, our improved
Dataset is a real world case study includes the 103 worst failed
real cases that were generated manually or automatically by
real applications through various testing techniques as shown
in Table 1 and we have illustrated some preliminary results. In
addition, we have classified each failed test cases and added the
problem phase column and then solution column as shown in
Table 2.

A failed test is a service failure, for example, the service could
not correctly deliver the expected result. In case of the test has been
conducted in certain conditions, then the service failure depicts
that a service has an error or fault such as requirements and design
flaws.

In Table 1, a random sample includes the test case id,
descriptions and weaknesses. The mentioned failed test cases
have generated manually or automatically through a number of
software applications. As shown in Table 2 this table has been
classified by finding the Problem phase at the Cloud Software
Development Life Cycle, the appropriate solution phase and the
solution for each test case mentioned in Table 1. Therefore, this
table has been developed to include the proposed solution for each

http://dx.doi.org/10.1016/j.future.2016.10.005

Please cite this article in press as: S.A. Aljawarneh, etal., Cloud security engineering: Early stages of SDLC, Future Generation Computer Systems (2016),

https://samate.nist.gov/SARD/testsuite.php

Download English Version:

https://daneshyari.com/en/article/4950388

Download Persian Version:

https://daneshyari.com/article/4950388

Daneshyari.com

https://daneshyari.com/en/article/4950388
https://daneshyari.com/article/4950388
https://daneshyari.com

