
Future Generation Computer Systems 75 (2017) 187–199

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Scalable real-time classification of data streams with concept drift
Mark Tennant a, Frederic Stahl a,∗, Omer Rana b, João Bártolo Gomes c

a University of Reading, Whiteknights, PO Box 225, RG6 6AY, Reading, UK
b Cardiff University, Computer Science & Informatics, Queen’s Buildings, 5 The Parade, Roath, CF24 3AA, Cardiff, UK
c Institute for Infocomm Research (I2R), A*STAR, 1 Fusionopolis Way Connexis, Singapore 138632, Singapore

h i g h l i g h t s

• A real-time data stream classifier adaptive to concept drift and robust to noise.
• A parallel implementation of the real-time data stream classifier.
• A discussion about using open source Big Data technologies for data stream mining.

a r t i c l e i n f o

Article history:
Received 30 November 2015
Received in revised form
3 June 2016
Accepted 22 March 2017
Available online 9 April 2017

Keywords:
Parallel data stream classification
Adaptation to concept drift
High velocity data streams

a b s t r a c t

Inducing adaptive predictive models in real-time from high throughput data streams is one of the
most challenging areas of Big Data Analytics. The fact that data streams may contain concept drifts
(changes of the pattern encoded in the stream over time) and are unbounded, imposes unique challenges
in comparison with predictive data mining from batch data. Several real-time predictive data stream
algorithms exist, however, most approaches are not naturally parallel and thus limited in their scalability.
This paper highlights the Micro-Cluster Nearest Neighbour (MC-NN) data stream classifier. MC-NN is
based on statistical summaries of the data stream and a nearest neighbour approach, which makes MC-
NN naturally parallel. In its serial version MC-NN is able to handle data streams, the data does not need
to reside in memory and is processed incrementally. MC-NN is also able to adapt to concept drifts. This
paper provides an empirical study on the serial algorithm’s speed, adaptivity and accuracy. Furthermore,
this paper discusses the new parallel implementation of MC-NN, its parallel properties and provides an
empirical scalability study.

© 2017 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The 4 main aspects of Big Data are [1]: data generated at
a fast rate (Velocity), very large and potentially unknown data
quantities (Volume), uncertainty in the data (Veracity) and different
forms of data such as text, structured data etc. (Variety). Other
aspects of Big Data have been added over the years, i.e. Volatility,
referring to how long the data is valid for, which is particularly
relevant when referring to real-time data streams; and Value,
referring to potential insights that can be derived by analysing
the data. Regarding Velocity, data arriving at a very high speed
challenges our computational hardware processing capabilities

∗ Corresponding author.
E-mail addresses:M.Tennant@pgr.reading.ac.uk (M. Tennant),

F.T.Stahl@reading.ac.uk (F. Stahl), RanaOF@cardiff.ac.uk (O. Rana),
bartologjp@i2r.a-star.edu.sg (J.B. Gomes).

[2,3]. This paper presents an algorithm that addresses the overlap
of the Velocity and Volume aspects of Big Data Analytics through
a parallel and adaptive real-time data stream classifier. In data
stream classification a classifier is trained in real-time on incoming
labelled data instances. This classifier is then used in real-time to
predict the class label of previously unseen data instances. The
classifier is required to adapt to changes of concepts that can occur
over time (known as concept drift [4]), in order to keep an accurate
classification model over time.

The growing importance of data stream classification tech-
niques is reflected throughmany commercial applications, such as:
sensor networks; Internet traffic management and web log analy-
sis [5]; TCP/IP packet monitoring [6]; intrusion detection [7]; and
credit card fraud detection [8]. Due to high throughput of data and
potentially infinite data streams, it is often not feasible to capture,
store and process the data. In the past two decades this has led to
the development and publication of data stream classifiers that can
analyse the data in real-time as it is being generated. For example,

http://dx.doi.org/10.1016/j.future.2017.03.026
0167-739X/© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.future.2017.03.026
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2017.03.026&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:M.Tennant@pgr.reading.ac.uk
mailto:F.T.Stahl@reading.ac.uk
mailto:RanaOF@cardiff.ac.uk
mailto:bartologjp@i2r.a-star.edu.sg
http://dx.doi.org/10.1016/j.future.2017.03.026
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


188 M. Tennant et al. / Future Generation Computer Systems 75 (2017) 187–199

data stream classifiers such as Hoeffding Trees [9], G-eRules [10],
Very Fast Decision Rules (VFDR) [11] only need one pass through
the data and thus train and adapt to concept drifts in real-time sce-
narios. Nonetheless, their scalability is limited to the utilisation of
one processing node at a time.

Few attempts have beenmade to combine parallelism and real-
time data stream classification. Parallel binning is used by the
SPDT [12] algorithm. However, the updating of SPDT classifier is
not performed in parallel. Vertical Hoeffding Trees (VHDT) [13]
partition the stream instances in terms of attributes, to support
parallel processing. However, VHDTs scalability is limited by the
number of attributes, as the attributes are distributed evenly over
the number of processors utilised. In addition there exists a parallel
method for concept drift detection termedOnlineMapReduceDrift
Detection Method (OMR-DDM) [14], which makes use of the error
rate of a collection of classifiers executed concurrently.

This paper proposes an inherently parallel adaptive data stream
classifier termed MC-NN. The classifier is based on Nearest
Neighbour (NN) classification and statistical summaries of the data
and recency. The statistical summary is structured in the form
of a set of variance based Micro-Clusters (MCs). Micro-Clusters
continuously adapt to concept drifts through absorbing new data
instances (updating statistics). An empirical evaluation [15] shows
that the serial implementation of MC-NN is already very fast and
robust to noise and concept drifts. However, it is limited by the
throughput of a single computational node.

A parallel implementation of MC-NN is presented, along with
a critical appraisal of implementation mechanisms that can be
used to support parallel analysis of real-time data. A scalability
evaluation is also carried out, identifying insights, difficulties
and solutions in implementing parallel real-time data stream
classifiers.

This paper is organised as follows: Section 2 summaries some
related work. Section 3 describes the developed naturally parallel
MC-NN algorithm and provides an empirical study comparing
it with its serial competitors in terms of classification accuracy,
adaptation to concept drifts and speed. Section 4 discusses the
parallel implementation of MC-NN and provides an empirical
scalability evaluation. It further discusses issues and experiences
in implementing real-time data processing algorithms. Concluding
remarks are provided in Section 5.

2. Related work

In the more general area of data mining an algorithm would
iterate over the data several times in order to generate a model
that fits the concepts (patterns) in the data. In each iteration the
model is altered in order to better fit the concepts. However, as
data streams are inherently infinite in length, iterative processes
cannot be used. If left un-monitored, the algorithms would try to
fit the concepts encoded on the whole stream and not account
for ‘Concept Drifts’. ‘Concepts’ can be thought of as blocks of
homogeneous/statistically similar data in a linear time frame.
As the length and number of ‘Concepts’ is unknown the data
stream must be monitored in real-time. An interesting area
of research is the development of ‘standalone’ Concept Drift
Detectors that monitor data streams in real-time. Typically, when
a Drift Detector algorithm detects a concept drift (correctly or
incorrectly) the current model is deleted and a new model
is created. Examples of Concept Drift detectors are DDM [16],
ECDD [17] and ELM[18]. Typically Concept Drift detectors work
independently and concurrently from the underlying data mining
algorithm (i.e. a classifier). Thus, both the data mining algorithm
and the concept drift detector have to be computationally efficient
in order not to hinder the computational performance. The data
mining algorithm used in conjunction with the drift detector does

not need to be adaptive — batch algorithms such as C4.5 [19],
Support Vector Machines [20], N-Prism [21], KNN, etc. can also
be used. This would require buffering enough data after the
concept drift has occurred and then applying the batch datamining
algorithm on the buffer. However, as mentioned earlier, batch
algorithms typically require several passes through the data and
thus may be too slow if data is arriving at a high speed. Further
techniques exist to adapt non adaptive data mining algorithms
to streaming data, such as sliding window [2] and reservoir
sampling [22]. Reservoir sampling maintains an unbiased and
representative fixed sized sample of the data instances retrieved
from the stream, whereas sliding window based algorithms, such
as G-eRules [10], consider only the most recent instances from the
stream to build the dataminingmodel. However, these techniques
would require to re-train batch algorithms and thus may be too
slow and impractical to use for data arriving at high speed.

Other techniques such as Hoeffding bound based tech-
niques [23] and Micro-Clusters [24] have been used to create in-
herently adaptive data streammining algorithms. Hoeffding based
techniques aim to create and adapt data mining models based on
a statistical upper bound on the probability that the so far re-
ceived attribute values deviates from its expected value. The Ho-
effding bound has been successfully used to create various data
stream mining algorithms known as Very Fast Machine Learning
(VFDT [25]). Micro-Cluster based techniques aim to create a sta-
tistical summary in terms of feature values, value distribution and
time-stamps of the data retrieved from the stream (CluStream[24],
On Demand Classification of Data Streams [26]).

A number of systems exist to support parallel stream process-
ing, the most notable of these include Esper [27]. However, Esper
makes use of a centralised architecture that runs on a single node
and keeps everything (states, operators, and so on) in memory
(although support is provided formulti-threading). However, if the
continuous queries have a large window size and might require
processing of a large number of data items/sec, Samza [28] pro-
vides a better alternative [29]. Samza can be though of as a simpli-
fied ‘pilot job’ [30]. In the pilot terminology a Samza job is an ‘early
bound’ container that will process an unknown future workload.
The key difference is that a pilot task is identified as an individ-
ual with its own workload to process, and therefore has no inter-
action with other tasks. Samza containers bound to a data stream
are static, they have access to all data passed through the under-
lying stream until they are stopped externally. Other alternatives
with similar functionality include: Apache Storm, Spark Streaming
and Apache S4 — a comparison can be found in [29]. A number of
messaging systems exist that Samza is capable of utilising. Broadly
speaking they can be split into three groups: Message Queue Sys-
tems, such as Kestrel and RabbitMQ [31], Publish Subscribe Sys-
tems, such as Kafka [32] and Kestrel [33], and Log Systems, such as
Flume [34] and Scribe [35]. Thework presented in this paper devel-
ops an inherently parallel and adaptive data stream classifier that
makes use of parallel stream processing technologies.

3. Adaptive Micro-Cluster nearest neighbour data stream
classification

3.1. Micro-Cluster based nearest neighbour

In the authors’ previous feasibility study [36], a real-time
classifier was implemented based upon KNN. In KNN a data
instance is assigned the class that is most common amongst its
K Nearest Neighbours. The basic approach of the real-time KNN
is to keep a sliding fixed sized time window of the most recent
data instances and execute KNN from the sliding window set.
Real-time KNN retrains on recent instances whilst older instances
are deleted. However, real-time KNN is computationally limited



Download	English	Version:

https://daneshyari.com/en/article/4950411

Download	Persian	Version:

https://daneshyari.com/article/4950411

Daneshyari.com

https://daneshyari.com/en/article/4950411
https://daneshyari.com/article/4950411
https://daneshyari.com/

