
Future Generation Computer Systems () –

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Execution time estimation for workflow scheduling
Artem M. Chirkin a,b, Adam S.Z. Belloum c, Sergey V. Kovalchuk b,∗, Marc X. Makkes d,
Mikhail A. Melnik b,c, Alexander A. Visheratin b, Denis A. Nasonov b

a ETH Zurich, Switzerland
b ITMO University, Russia
c University of Amsterdam, Netherlands
d VU University Amsterdam, Netherlands

h i g h l i g h t s

• An approach and algorithm to workflow execution time estimation is proposed.
• Formal description of the approach is provided.
• Workflow reduction techniques for the scheduling purposes are discussed.
• Scheduling GAHEFT algorithm with the use of the proposed algorithm is presented.
• Applicability of the proposed approach is demonstrated with experimental study.

a r t i c l e i n f o

Article history:
Received 17 May 2016
Received in revised form
30 September 2016
Accepted 7 January 2017
Available online xxxx

Keywords:
Workflow
Scheduling
Time estimation
Cloud computing
Genetic algorithm

a b s t r a c t

Estimation of the execution time is an important part of theworkflow scheduling problem. The aim of this
paper is to highlight commonproblems in estimating theworkflow execution time and propose a solution
that takes into account the complexity and the stochastic aspects of the workflow components as well as
their runtime. The solution proposed in this paper addresses the problems at different levels from a task
to a workflow, including the error measurement and the theory behind the estimation algorithm. The
proposed makespan estimation algorithm can be integrated easily into a wide class of schedulers as a
separate module. We use a dual stochastic representation, characteristic/distribution function, in order
to combine task estimates into the overall workflow makespan. Additionally, we propose the workflow
reductions—operations on a workflow graph that do not decrease the accuracy of the estimates but
simplify the graph structure, hence increasing the performance of the algorithm. Another very important
feature of ourwork is thatwe integrate the described estimation schema into earlier developed scheduling
algorithm GAHEFT and experimentally evaluate the performance of the enhanced solution in the real
environment using the CLAVIRE platform.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The execution time estimation is used mainly to support work-
flow scheduling. In this work we use ‘‘execution time’’, ‘‘runtime’’
and ‘‘makespan’’ as synonyms. In order to obtain the workflow
runtime estimation, one needs to combine the execution time

∗ Corresponding author.
E-mail addresses: chirkinart@gmail.com (A.M. Chirkin), a.s.z.belloum@uva.nl

(A.S.Z. Belloum), sergey.v.kovalchuk@gmail.com (S.V. Kovalchuk),
M.X.Makkes@uva.nl (M.X. Makkes), mihail.melnik.ifmo@gmail.com (M.A. Melnik),
alexvish91@gmail.com (A.A. Visheratin), denis.nasonov@gmail.com
(D.A. Nasonov).

estimations of the tasks forming the workflow. Makespan estima-
tion is an essential part of the scheduling optimization process be-
cause it greatly affects the quality of generated solutions nomatter
what optimization criteria are used. Accurate estimation is espe-
cially important for metaheuristic algorithms, which are based on
estimations of evolving solutions. An incorrect estimationmay lead
to negative effects.

The runtime estimation problem is not aswell-developed as the
scheduling problem because several straightforward techniques
exist, providing acceptable performance inmany scheduling cases.
However, these techniques may fail in some cases, especially in a
deadline constrained setting. For example, consider a very basic
approach when we take the average time of previous executions

http://dx.doi.org/10.1016/j.future.2017.01.011
0167-739X/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2017.01.011
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:chirkinart@gmail.com
mailto:a.s.z.belloum@uva.nl
mailto:sergey.v.kovalchuk@gmail.com
mailto:M.X.Makkes@uva.nl
mailto:mihail.melnik.ifmo@gmail.com
mailto:alexvish91@gmail.com
mailto:denis.nasonov@gmail.com
http://dx.doi.org/10.1016/j.future.2017.01.011

2 A.M. Chirkin et al. / Future Generation Computer Systems () –

of the same package as the only value representing the runtime of
the task. If we apply it to a real case with a lot of tasks running in
parallel, it will underestimate the total execution time, because it is
very likely for at least one task to take more than average time for
execution. In addition, when estimating the workflow execution
time, we should take into account the dependency between the
tasks and the heterogeneity of the tasks and computing resources.
Another important feature of scientific workflows, from the
estimation perspective, is that many components of the runtime
are stochastic in their nature (data transfer time, overheads, etc.).
These facets are not considered together in modern research;
therefore, the problem requires a diligent investigation.

Besides scheduling, runtime estimation is used to give the
expected price of the workflow execution when leasing Cloud
computing resources [1]. Given the estimated timebounds, one can
use a model described in [2] to provide a user with the pre-billing
information.

The central idea of the work is to allow a scheduler to use
the estimates as the random variables instead of keeping them
constant, and provide the complete information about them
(e.g. estimated distribution functions) at maximum precision. We
compare our results to the only known-to-us alternative providing
the distribution estimation – ‘‘fully probabilistic’’ algorithm –
that is based on combining quantiles of the tasks’ makespans.
When calculating the workflow execution time, we assume that
the tasks runtime models are adjusted to the distinct computing
nodes; this allows us to separate the task-level (estimating the
runtime on a given machine) and the workflow-level (aggregate
the tasks’ estimates into the overall makespan) problems. We also
combine the proposed approach with the previously developed
algorithm GAHEFT [3] and evaluate the performance of this
schema in comparison with simple GAHEFT and a widely used
heuristic algorithmcalledMinMin. The part of the paper devoted to
makespan estimation is based on aMaster’s thesis by A. Chirkin [4].
See the thesis for the proofs of formulae and the implementation
details.

As this work is dedicated to the estimation of schedules,
proposed in this work scheduling algorithms are static. However,
they might be included in our dynamic hybrid MHGH [3] scheme,
which is based on GAHEFT. Therefore, by improving the static
version of GAHEFT we also improve the dynamic version.

2. Related works

Workflow scheduling is known to be a complex problem; it
requires considering various aspects of an application’s execu-
tion (e.g. resource model, workflow model, scheduling criteria,
etc.) [5]. Therefore, many authors describing the architecture of
their scheduling systems do not focus on the runtime estimation.
We separate the estimation from the scheduling so that the pro-
posed approach (the workflow makespan estimation) can be used
in a variety of scheduling algorithms, e.g. HEFT [6] andGAHEFT. Ad-
ditionally, in order to monitor the workflow execution process or
reschedule the remaining tasks, one can use the estimation system
to calculate the remaining execution time at themomentwhen the
workflow is being executed. Some examples of scheduling systems
that can use any implementations of the runtime estimation mod-
ule are CLAVIRE [7,8], a scheduling framework proposed by Ling
Yuan et al. [9], and CLOUDRB by Somasundaram and Govindara-
jan [10].

There are no papers known to us, which are dedicated specifi-
cally to the workflow runtime estimation problem. Instead, there
is a variety of scheduling papers that describe the runtime models
in the context of their scheduling algorithms. We decided to clas-
sify the schedulers by the way they represent the execution time.
Table 1 shows a classification of workflow scheduling algorithms;

Table 1
Usage of the runtime estimation in scheduling.

Time Task Workflow

Unspecified Task ranking and makespans
[11,12]

Architecture [9,10,13,14]

Ordinal Round-Robin, greedy etc.
[15,16]

–

Fixed NP parallelizing models
[17–19]

Optimization algorithms
[11,15,20,21]

Stochastic – Chebyshev inequalities [22],
composing quantiles [23]

Fig. 1. Primitive workflow types: (a) sequential workflow—the workflow
makespan is the sum of variables; (b) parallel workflow—the makespan is
the maximum of variables; (c) complex workflow that can be split into
parallel/sequential parts; (d) complex irreducible workflow.

the section below discusses the classes in details. Several papers
are difficult to be classified because of two reasons: first, some ap-
proaches stay between two classes (e.g. in [11,12,17–19] the exe-
cution time is calculated as a mean of a random variable, but the
variance of the time is not used); second, some researchers focus
more on the architecture of scheduling software than on the algo-
rithms, so one can use different estimate representations [9,10,14].

Ordinal time: The first class of schedulers uses task-level
scheduling heuristics (which do not take into account the
execution time of the workflow). An algorithm of such a scheduler
uses a list of tasks ordered by their execution time. This ordering is
the only information used tomap the tasks onto the resources. First
of all, this class is based on various greedy algorithms; two of them
are described in [15]. Compared to the workflow-level algorithms,
they are very fast but have been shown to be less effective [15]. A
number of scheduling heuristics of this class is described in a paper
by Gutierrez-Garcia and Sim [16].

Fixed time: The second class of schedulers considers the task
runtime as a constant value. On the one hand, this assumption
simplifies the estimation of the workflow execution time, because
in this case there is no need to take into account a possibility
that a task with the longer expected runtime finishes its execution
faster than a task with the shorter expected time. Especially, this
approach simplifies the calculation of the workflow execution
time in case of parallel branches (Fig. 1(b)): if the execution time
of branches is constant, then the expected execution time of
the whole workflow is equal to the maximum of the branches’
execution time. On the other hand, this assumption may lead
to significant errors in the estimations and, consequently, to
inefficient scheduling. In the case of a large number of parallel
tasks, even a small uncertainty in the task execution time makes
the expected makespan of the workflow longer. However, in some
cases, a randompart of the programexecution time is small enough
that this approach is used. One example of using fixed time is the
work ofM.Malawski et al. [24] who introduced a cost optimization
model of workflows in IaaS (Infrastructure as a Service) clouds in a
deadline-constrained setting.

Other examples of schedulers that do not exploit the stochastic
nature of the runtime can be found in [11,15,20,21]. They calculate
the workflow makespan; this means that they have to calculate
execution time of parallel branches, but the stochastic and fixed
approaches to estimate it are different. Themain problem, again, is
that the average of the maximum of multiple random variables is
usually larger than the maximum of their averages.

Stochastic time: The last class of schedulers makes assumptions
that have a potential to give themost accurate runtime predictions.

Download English Version:

https://daneshyari.com/en/article/4950425

Download Persian Version:

https://daneshyari.com/article/4950425

Daneshyari.com

https://daneshyari.com/en/article/4950425
https://daneshyari.com/article/4950425
https://daneshyari.com

