
Future Generation Computer Systems 71 (2017) 18–31

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Copernicus, a hybrid dataflow and peer-to-peer scientific computing
platform for efficient large-scale ensemble sampling
Iman Pouya a, Sander Pronk a, Magnus Lundborg b, Erik Lindahl a,b,∗
a Swedish eScience Research Center, Department of Theoretical Physics, KTH Royal Institute of Technology, Stockholm, Sweden
b Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Sweden

h i g h l i g h t s

• Hybrid dataflow and peer-to-peer computing to fully automated ensemble sampling.
• The platform automatically distributes workloads and manages them resiliently
• Problems are defined as workflow by reusing existing software and scripts.
• Portability in networks where parts are behind firewalls.

a r t i c l e i n f o

Article history:
Received 8 December 2015
Received in revised form
18 October 2016
Accepted 5 November 2016
Available online 10 December 2016

Keywords:
Peer-too-peer
Distributed computing
Dataflow programming
Scientific computing
Job resiliency

a b s t r a c t

Compute-intensive applications have gradually changed focus from massively parallel supercomputers
to capacity as a resource obtained on-demand. This is particularly true for the large-scale adoption of
cloud computing and MapReduce in industry, while it has been difficult for traditional high-performance
computing (HPC) usage in scientific and engineering computing to exploit this type of resources. However,
with the strong trend of increasing parallelism rather than faster processors, a growing number of
applications target parallelism already on the algorithm level with loosely coupled approaches based
on sampling and ensembles. While these cannot trivially be formulated as MapReduce, they are highly
amenable to throughput computing. There are many general and powerful frameworks, but in particular
for sampling-based algorithms in scientific computing there are some clear advantages from having a
platform and scheduler that are highly aware of the underlying physical problem. Here, we present how
these challenges are addressed with combinations of dataflow programming, peer-to-peer techniques
and peer-to-peer networks in the Copernicus platform. This allows automation of sampling-focused
workflows, task generation, dependency tracking, and not least distributing these to a diverse set of
compute resources ranging from supercomputers to clouds and distributed computing (across firewalls
and fragile networks). Workflows are defined frommodules using existing programs, which makes them
reusable without programming requirements. The system achieves resiliency by handling node failures
transparently with minimal loss of computing time due to checkpointing, and a single server can manage
hundreds of thousands of cores e.g. for computational chemistry applications.

© 2016 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Computational power has evolved fromaprecious resource into
a commodity, and new access models such as cloud computing
have paved the road for large-scale computing in industry. Based
on history, we can expect another order-of-magnitude increase

∗ Corresponding author at: Swedish eScience Research Center, Department of
Theoretical Physics, KTH Royal Institute of Technology, Stockholm, Sweden.

E-mail address: erik@kth.se (E. Lindahl).

every five years. However, this does not mean computing is
no longer a bottleneck: While throughput computing works
well for many classes of problems that can use the MapReduce
programming model, it remains a huge challenge for most
traditional high-performance computing applications in science
and engineering that rely on active parallelism using message-
passing interfaces and low-level parallelization. A handful of
problems (for instance computational fluid dynamics) still scale
well to 100,000 or more processors by increasing the resolution,
but for most applications it is becoming a major concern that
there is no longer sufficient inherent parallelism in the algorithm

http://dx.doi.org/10.1016/j.future.2016.11.004
0167-739X/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.future.2016.11.004
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2016.11.004&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:erik@kth.se
http://dx.doi.org/10.1016/j.future.2016.11.004
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


I. Pouya et al. / Future Generation Computer Systems 71 (2017) 18–31 19

Fig. 1. Characteristics of iterative sampling methods. To generate enough samples, thousands of loosely coupled jobs can be started in parallel and analysed as soon as
enough samples have been generated (a). The analysis step determines whether another round of sampling should be started or if we have converged to a solution. Some
sampling problems can take days or weeks to compute and it is likely that some of the individual jobs will fail (b) during this period due to machine or user errors, and it
must be possible to recover from these automatically. The input parameters and results of each job should also be transparent (c) for auditing and monitoring purposes.

to keep extending the strong scaling regime. This is particularly
true for iterative simulation algorithms based on discrete time
steps, for instancemolecular dynamics. As the iteration times have
moved into themicrosecond range, strong scaling is simply limited
by the network latency rather than the throughput of compute
units. To overcome this impasse, there is an increasing interest
in ensemble methods such as Markov state modelling [1–3],
milestoning [4], strings using swarms [5,6] and metadynamics [7,
8]. The common feature of these solutions is to reformulate a
single long simulation as an ensemble sampling problem that can
use many short simulations to produce a single observation such
as an average structure or reaction rates. This approach is not
limited to molecular dynamics; many other numerical algorithms
such as Monte Carlo simulations, finite element analysis, or
stochastic PDEs are random in nature and can be formulated as
iteratively generating samples, mixed with analysis steps that in
turn generate seeds for new sampling rounds (Fig. 1).

This is a powerful way to explore states in an unknown high-
dimensional parameter space, and by using adaptive algorithms to
generate new seeds the total sampling can be much more efficient
than relying on single long computations. By reformulating the
problem into a statistical one, an entirely new layer of parallelism
is exposed on the algorithm level since many loosely coupled
computations can be used to generate data with synchronization
intervals ranging from minutes to hours. This resolves the latency
bottlenecks and makes the methods suitable e.g. for distributed
computing, but the approach is equally useful for supercomputers
where parallelization can be combined with tight ensemble
synchronization, not to mention that it achieves close to perfect
resiliency against node failures. Despite these advantages, the
introduction of ensemble sampling in HPC applications has been
relatively slow, for several reasons: (i) It is not until the last
few years we have started to see the end of strong scaling, (ii)
rewriting applications to be ensemble-focused is a large amount
of work, (iii) this far, users have been required to do large parts
of the statistical modelling and adaptive step manually, and (iv)
managing thousands of simulations and handling analysis and new
iterations quickly becomes a tedious task.

These problems can largely be solved with more automated
techniques to handle the sampling. Just as many users treat the
program running on the supercomputer as a black box (although
they are aware of the algorithm),we believe there is great potential
in completely hiding the execution of individual simulations and
rather work with scientific problems and sampling algorithms
as the black boxes. One successful example of this type of
commoditization in computational chemistry is the Plumed [9]
package that integrates with a number of different molecular
dynamics packages for free energy sampling, which has enabled

a number of teams to scale molecular dynamics to very large
resources [10,11].

To handle a broader set of use cases, it must be possible
for users to create custom automated pipelines that generate
workloads on the HPC program or physical problem level and
automatically distribute them to matching compute resources.
Peer-to-peer (p2p) networking [12], grid computing [13–15], and
dataflow programming [16] are existing concepts that all target
some of these challenges, and in combination they provide very
powerful solutions.

There are many existing grid and p2p computing implementa-
tions such as Condor [17,18], Gnutella [19], Boinc [20], Dirac [21],
and Falkon [22]. These all aim at consolidating heterogeneous com-
pute resources to optimally match a compute job to a resource.
They give users very granular control and are very well suited for
setting up a custom grid and exposing a queue for users to sub-
mit individual jobs. Similarly for dataflow programming, imple-
mentations such as Naiad [23], Flumejava [24], Millwheel [25],
and Swift [26] provide domain-specific languages and libraries that
give users the flexibility to create powerful and efficient imple-
mentations. As a concept, dataflow programming has mostly been
orthogonal to grid or p2p computing, but systems such as Pega-
sus [27], Kepler [28], Triana [29], and Fireworks [30] have emerged
that combine them. MapReduce is also a beautiful example of
the power in combining concepts [31]; this was originally a pro-
gramming model, but today it is more coupled to distributed and
cloud computing as it has been extended with a problem-aware
engine that handles workload distribution automatically, and it
works very well for large-scale data analysis. While the above-
mentioned dataflow implementations are very general, some of
them can also come with a rather steep learning curve (especially
for non-programmers), and porting an existing program that re-
lies e.g. on simulations can be a relatively large undertaking since
the entire algorithmic approach has to fit the specific programming
model. In particular, for our own field of scientific computing, it
is very common to base work on large, old, and complex (paral-
lel) programs, which are executed either on supercomputers or in
distributed computing environments to generate statistical data. If
these codes could be combined into automatedworkflows itwould
both extend themwith distributed computing capabilities and en-
able access to a much wider range of throughput-focused compu-
tational resources, without much extra work.

The wishlist for ensemble sampling would be to combine the
features of existing platforms with a system that can manage a
dynamic workflow behaviour, allow users to exploratively alter
input values, inspect input/output values during runtime, and
leave individual job management to be handled automatically. To
lower the barrier of entry it should be possible to reuse existing



Download English Version:

https://daneshyari.com/en/article/4950432

Download Persian Version:

https://daneshyari.com/article/4950432

Daneshyari.com

https://daneshyari.com/en/article/4950432
https://daneshyari.com/article/4950432
https://daneshyari.com

