Future Generation Computer Systems 71 (2017) 32-42

Contents lists available at ScienceDirect 4
FiGICIS!
Future Generation Computer Systems =
journal homepage: www.elsevier.com/locate/fgcs e

Partitioning dynamic graph asynchronously with distributed FENNEL @CmssMark

Zhan Shi?, Junhao Li**, Pengfei Guo b1 Shuangshuang Li¢, Dan Feng®*, Yi Su?

@ Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

b gingting.fm, Inc., Shanghai, China

HIGHLIGHTS

e Streaming graph partitioning is hard to scale because of its sequential natural.
e An asynchronous streaming graph partitioning model is proposed to improve throughput.
o Network utilization can be maximized by proposed tree-shaped map-reduce network.

ARTICLE INFO

Article history:

Received 5 July 2016

Received in revised form

31 October 2016

Accepted 7 January 2017
Available online 14 January 2017

ABSTRACT

Keywords:

Graph partitioning

Streaming

FENNEL

Asynchronous

Tree-shaped map-reduce network

Graph partitioning is important in distributed graph processing. Classical method such as METIS works
well on relatively small graphs, but hard to scale for huge, dynamic graphs. Streaming graph partitioning
algorithms overcome this issue by processing those graphs as streams. Among these algorithms, FENNEL
achieves better edge cut ratio, even close to METIS, but consumes less memory and is significantly faster.
On the other hand, graph partitioning may also benefit from distributed graph processing. However, to
deploy FENNEL on a cluster, it is important to avoid quality loss and keep efficiency high. The direct
implementation of this idea yields a synchronous model and a star-shaped network, which limits both
scalability and efficiency. Targeting these two problems, we propose an asynchronous model, combined
with a dedicated tree-shaped map-reduce network which is prevail in systems such as Apache Hadoop
and Spark, to form AsyncFENNEL (asynchronous FENNEL). We theoretically prove that, the impact on
partition quality brought by asynchronous model can be kept as minimal. We test AsyncFENNEL with
various synthetic and real-world graphs, the comparison between synchronous and asynchronous models
shows that, for streamed natural graphs, AsyncFENNEL can improve performance significantly (above
300% with 8 workers/partitions) with negligible loss on edge cut ratio. However, more worker nodes will
introduce a heavier network traffic and reduce efficiency. The proposed tree-shaped map-reduce network
can mitigate that impact and increase the performance in that case.

© 2017 Published by Elsevier B.V.

1. Introduction

indexed Web contains at least 4 billion interlinked pages [6]. On
Facebook, there are over 1.65 billion monthly active users which

At present, graph processing is applied in many fields, for exam-
ple, in social networks, graph processing can either be used for se-
curity analysis [1] or finding trending topics [2], and in traditional
fields such as SSSP (Single Source Shortest Paths) and paper cita-
tions, social network analysis [3], data mining [4], protein interac-
tions [5]. The ever growing complexity and scale of various graphs
are now posing a big challenge to graph processing. Currently, the

* Corresponding authors.
E-mail addresses: zshi@hust.edu.cn (Z. Shi), allenlee@hust.edu.cn (J. Li),
1010382609@qq.com (P. Guo), doublelee@hust.edu.cn (S. Li), dfeng@hust.edu.cn
(D. Feng), suyi@hust.edu.cn (Y. Su).

1 Work done while at Huazhong University of Science and Technology.

http://dx.doi.org/10.1016/j.future.2017.01.014
0167-739X/© 2017 Published by Elsevier B.V.

is a 15% increase year over year [7]. Besides, every 60 s, among
those friend links, 510 comments are posted, 293,000 statuses are
updated, and 136,000 photos are uploaded [8]. Such an unprece-
dented data deluge brings us not only new opportunities and ben-
efits, but also challenges in computing infrastructure.

Most graph computing tasks, such as Community Detec-
tion [9], Connected Components [10], Triangle Counting [11],
PageRank [12], Shortest Path [13] and Graph Diameter [14], pro-
cess graph data iteratively, which makes those tasks formidable
to any stand-alone machine when the graph is very large. A tra-
ditional method for dealing with this problem is to divide the large
graph into several smaller subgraphs, then processing it using a
distributed system. These subgraphs must be balanced, so it can
take advantage of parallel computing to accelerate processing.

http://dx.doi.org/10.1016/j.future.2017.01.014
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2017.01.014&domain=pdf
mailto:zshi@hust.edu.cn
mailto:allenlee@hust.edu.cn
mailto:1010382609@qq.com
mailto:doublelee@hust.edu.cn
mailto:dfeng@hust.edu.cn
mailto:suyi@hust.edu.cn
http://dx.doi.org/10.1016/j.future.2017.01.014

Z. Shi et al. / Future Generation Computer Systems 71 (2017) 32-42 33

Although a good partition is important for processing graph
efficiently, it is also hard to attain. Classical definition of balanced
partition problem is to partition a graph in a way that all partitions
have roughly the same vertex set size, and minimizes the edges
whose two endpoints are in different partitions (cut edges). This
problem was proved to be NP hard [15,16]. For years, there are
many approximative algorithms been proposed and we will briefly
introduce those algorithms next.

Modern distributed graph processing platforms such as MapRe-
duce [17], Pregel [18], PEGASUS [10] and GraphLab [19] by default
use hash partition to randomly partition the graph. This strategy
is easy to implement, and can make the vertices of the subgraphs
well-balanced, but the edge cut ratio goes up to 1 — 1/k (k is the
number of partitions). In these systems, graph processing has to
exchange messages between different partitions along the inter-
partition edges. Those messages will travel through the network,
which could be very costly if edge cut ratio is high.

Another major challenge for large-scale graph partitioning is
how to handle dynamic graph data. The 60 s statistics of Facebook
mentioned previously reveals a classical scenario of modern appli-
cations, the underlying graph is changing constantly and rapidly,
and many real-world graphs share the same feature. Therefore, the
processing on these graphs should be fast enough to catch up the
change. Stream processing provides a viable solution to this prob-
lem. Combining with the idea of stream processing, graph parti-
tioning becomes streaming graph partitioning, every arrived ver-
tex needs to be immediately determined which partition it belongs
to.

Given that the goal of large-scale graph partitioning is to gener-
ate better partition faster, with limited resources, we aim to use our
distributed system to accelerate the graph partition. It is because
a single machine has limited resources such as CPUs and memory,
so it is necessary for us to use a distributed system.

The remainder of this paper is organized as follows. Section 2
provides a short study on graph partitioning and recent advances
on streaming graph partitioning. In Section 3, we present our
method and our analysis of partition quality and performance. The
experiments results are presented in Section 4. Section 5 contains
general conclusions and directions for future work.

2. Related work

For years, many researchers have proposed various graph
partitioning methods. Spectral method [20,21] converts the graph
into a matrix, then use eigenvectors to partition it, however
this requires massive computation. Geometric method [22-24]
partitions the graph based on geometric characteristics, but suffers
a high edge cut ratio. Kernighan-Lin (KL) algorithm [25] starts
from a vertex and add its neighbour level by level to the partition
until the added vertices reach the half of the whole vertices,
and its improved method FM (Fiduccia-Mattheyses) [26] provides
an efficient solution to the problem of separating a network of
vertices into 2 separate partitions in an effort to minimize the
number of nets which contain vertices in each partition. Based on
classical algorithms, modern libraries such as METIS [27] adopts
a multilevel approach. The main idea is to iteratively coarsen
the initial graph by merging vertices, then uncoarsen the graph
iteratively with local improvement algorithms such as the KL and
FM applied at each level. A multilevel KL-based algorithm [28] is
presented as a fast partitioner which allows realtime deployment
calculations. Above algorithms are designed for static graphs.

At present, the most common dynamic graph partitioning
algorithms are hash algorithm, deterministic greedy algorithm,
minimum non-neighbour algorithm. Compared to static graph
partitioning algorithms, these graph partitioning algorithms use
less computation and do not need the whole information of a graph

to determine the partition that every incoming vertex belongs,
so the partition would be faster, but the edge cut ratio is higher
than the static graph partitioning algorithms. Recently, streaming
graph partitioning algorithms [29-32] are proposed to handle
massive graphs as data streams. Balanced edge partition [33] has
emerged as a new approach to partition an input graph data for the
purpose of scaling out parallel computations, which is of interest
for several modern data analytic computation platforms, including
platforms for iterative computations, machine learning problems,
and graph databases. Furthermore, JA-BE-JA [34] is proposed
to run partitioning in a distributed graph-processing system,
and achieves high parallelism. PAGE [35] is a partition aware
engine for parallel graph computation that equips a new message
processor and a dynamic concurrency control model. Leopard [36],
cooperates with FENNEL, achieves vertex reassignment and
replication, can partition dynamic graphs heuristically.

FENNEL [37] was proposed to partition large-scale streaming
graph with less computational complexity, which is O (log(k)/k),
where kis the number of partitions or hosts. FENNEL is significantly
faster than METIS, and its edge cut ratio is close to METIS. Although
modern graph processing systems usually adopt parallel architec-
ture such as map-reduce to handle big graphs [38], to use FENNEL
in the same way is not easy. As a stream partitioner, FENNEL pro-
cesses incoming vertices as one stream, simply running multiple
processes or threads is not enough for improving parallelism. Fur-
thermore, while doing greedy vertex assignment, every partition
will calculates the cost if the vertex is assigned to this partition,
the central machine node will compare the costs of every parti-
tion altogether. This structure of the system will be a star-shaped
network, with a central node for making decisions, as for network,
aggregated data transfer network flow will become a limitation.

3. Distributed partitioning

As we have mentioned in Section 2, among streaming graph
partitioning algorithms, FENNEL has a better edge cut ratio, even
catches up METIS in many cases. But to deploy in a distributed
system, for scaling performance, we need to handle the problems
from processing and transferring.

3.1. Processing model of FENNEL

In adistributed system, by assigning one partition to one worker
node, we get a direct implementation of FENNEL processing model.
For every newly arrived vertex v, a proxy node will broadcast the
vertex’s data, including its neighbour list to all K worker nodes.
The workers will cache that data firstly, and use a greedy vertex
assignment algorithm to calculate the gradient 6g (v, S;) = [N(v)N
S| — a((|S| + 1)¥ — |S|¥), which gives the outcome if vertex v is
allocated to this worker (partition), then return the value to proxy.
After proxy have gathered all the returned values g (v, S), it will
choose §maxg (v, S;), and broadcast the decided optimal partition i
back to K workers. Then, for every worker, it will check whether
it holds the optimal partition i or not. If yes, the worker takes
corresponding vertex data from cache and puts in local storage.
Otherwise, the worker removes corresponding vertex data from
cache and puts a key-value pair (v, i) into local table for future
reference.

But there are two major problems in the processing of above
FENNEL model:

1. Low network efficiency caused by synchronous processing.
Obviously, for every worker, the process is comprised of three
phases: receiving vertex, calculating gradient and sending
gradient back, which are completely synchronous. Then, the

Download English Version:

https://daneshyari.com/en/article/4950433

Download Persian Version:

https://daneshyari.com/article/4950433

Daneshyari.com

https://daneshyari.com/en/article/4950433
https://daneshyari.com/article/4950433
https://daneshyari.com

