
Future Generation Computer Systems 71 (2017) 102–112

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Bidirectional Conditional Insertion Sort algorithm; An efficient
progress on the classical insertion sort
Adnan Saher Mohammed a,*, Şahin Emrah Amrahov b, Fatih V. Çelebic
a Ankara Yıldırım Beyazıt University, Graduate School of Natural Sciences, Computer Engineering Department, Ankara, Turkey
b Ankara University, Faculty of Engineering, Computer Engineering Department, Ankara, Turkey
c Ankara Yıldırım Beyazıt University, Faculty of Engineering and Natural Sciences, Computer Engineering Department, Ankara, Turkey

h i g h l i g h t s

• We propose a new efficient sorting algorithm Bidirectional Conditional Insertion Sort (BCIS).
• We compare BCIS with insertion sort and quicksort.
• We prove that the average time complexity of BCIS very close to O(n1.5) for normally or uniformly distributed data.

a r t i c l e i n f o

Article history:
Received 8 August 2016
Received in revised form 5 December 2016
Accepted 30 January 2017
Available online 31 January 2017

Keywords:
Insertion sort
Sorting
Quicksort
Bidirectional insertion sort
BCIS

a b s t r a c t

In this paper, we proposed a new efficient sorting algorithmbased on insertion sort concept. The proposed
algorithm is called Bidirectional Conditional Insertion Sort (BCIS). It is in-place sorting algorithm and it
has remarkably efficient average case time complexity when compared with classical insertion sort (IS).
By comparing our new proposed algorithm with the Quicksort algorithm, BCIS indicated faster average
case time for relatively small size arrays up to 1500 elements. Furthermore, BCISwas observed to be faster
than Quicksort within high rate of duplicated elements even for large size array.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Algorithms have an important role in development process
of computer science and mathematics. Sorting is a fundamental
process in computer science which is commonly used for canon-
icalizing data. In addition to the main job of sorting algorithms,
many algorithms use different techniques to sort lists as a pre-
requisite step to reduce their execution time [1]. The idea behind
using sorting algorithms by other algorithm is commonly known
as reduction process. A reduction is a method for transforming one
problem to another easier than the first problem [2]. Consequently,
the need for developing efficient sorting algorithms that invest the
remarkable development in computer architecture has increased.

Sorting is generally considered to be the procedure of reposi-
tioning a known set of objects in ascending or descending order
according to specified key values belonging to these objects. Sort-
ing is guaranteed to finish in finite sequence of steps [3].

* Corresponding author.
E-mail addresses: adnshr@gmail.com (A.S. Mohammed),

emrah@eng.ankara.edu.tr (Ş.E. Amrahov), fvcelebi@ybu.edu.tr (F.V. Çelebi).

Among a large number of sorting algorithms, the choice of
which is the best for an application depends on several factors like
size, data type and the distribution of the elements in a data set.
Additionally, there are several dynamic influences on the perfor-
mance of the sorting algorithmwhich can be briefed as the number
of comparisons (for comparison sorting), number of swaps (for in-
place sorting), memory usage and recursion [4].

Generally, the performance of algorithms is measured by the
standard Big O(n) notation which is used to describe the com-
plexity of an algorithm. Commonly, sorting algorithms has been
classified into two groups according to their time complexity. The
first group isO(n2) which contains the insertion sort, selection sort,
bubble sort etc. The second group is O(n log n), which is faster than
the first group, includes Quicksort, merge sort and heap sort [5].
The insertion sort algorithm can be considered as one of the best
algorithms in its family (O(n2) group) due to its performance, stable
algorithm, in-place, and simplicity [6]. Moreover, it is the fastest
algorithm for small size array up to 28–30 elements compared to
the Quicksort algorithm. That is why it has been used in conjugate
with Quicksort [7–10].

http://dx.doi.org/10.1016/j.future.2017.01.034
0167-739X/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2017.01.034
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2017.01.034&domain=pdf
mailto:adnshr@gmail.com
mailto:emrah@eng.ankara.edu.tr
mailto:fvcelebi@ybu.edu.tr
http://dx.doi.org/10.1016/j.future.2017.01.034


A.S. Mohammed et al. / Future Generation Computer Systems 71 (2017) 102–112 103

Several improvements on major sorting algorithms have been
presented in the literature [11–13]. Chern and Hwang [14] give
an analysis of the transitional behaviors of the average cost from
insertion sort to quicksort with median-of-three. Fouz et al. [15]
provide a smoothed analysis of Hoare’s algorithm who has found
the quicksort. Recently, we meet some investigations of the dual-
pivot quicksort which is the modification of the classical quicksort
algorithm. In the partitioning step of the dual-pivot quicksort
two pivots are used to split the sequence into three segments
recursively. This can be done in different ways. Most efficient
algorithm for the selection of the dual-pivot is developed due to
Yaroslavskiy question [16]. Nebel, Wild and Martinez [17] explain
the success of Yaroslavskiy’s new dual-pivot Quicksort algorithm
in practice. Wild and Nebel [18] analyze this algorithm and show
that on average it uses 1.9n ln n+O(n) comparisons to sort an input
of size n, beating standard quicksort, which uses 2n ln n + O(n)
comparisons. Aumüller and Dietzfelbinger [19] propose a model
that includes all dual-pivot algorithms, provide a unified analysis,
and identify new dual-pivot algorithms for theminimization of the
average number of key comparisons among all possible algorithms.
This minimum is 1.8n ln n + O(n). Fredman [20] presents a new
and very simple argument for bounding the expected running time
of Quicksort algorithm. Hadjicostas and Lakshmanan [21] analyze
the recursive merge sort algorithm and quantify the deviation of
the output from the correct sorted order if the outcomes of one
or more comparisons are in error. Bindjeme and Fill [22] obtain
an exact formula for the L2-distance of the (normalized) number
of comparisons of Quicksort under the uniform model to its limit.
Neininger [23] proves a central limit theorem for the error and
obtain the asymptotics of the L3–distance. Fuchs [24] uses the mo-
ment transfer approach to re-prove Neininger’s result and obtains
the asymptotics of the Lp–distance for all 1 ≤ p <∞.

Grabowski and Strzalka [25] investigate the dynamic behavior
of simple insertion sort algorithm and the impact of long-term
dependencies in data structure on sort efficiency. Biernacki and
Jacques [26] propose a generative model for rank data based on
insertion sort algorithm. The work that presented in [27] is called
library sort or gapped insertion sort which is trading-off between
the extra space used and the insertion time, so it is not in-place
sorting algorithm. The enhanced insertion sort algorithm that pre-
sented in [28] is use approach similar to binary insertion sort
in [29], whereas both algorithms reduced the number of compar-
isons and kept the number of assignments (shifting operations)
equal to that in standard insertion sort O(n2). Bidirectional inser-
tion sort approaches presented in [3,30]. They try to make the list
semi sorted in Pre-processing step by swapping the elements at
analogous positions (position 1 with n, position 2 with (n − 1)
and so on). Then they apply the standard insertion sort on the
whole list. The main goal of this work is only to improve worst
case performance of IS [30]. Onother hand, authors in [6] presented
a bidirectional insertion sort, firstly exchange elements using the
same way in [3,30], then starts from the middle of the array and
inserts elements from the left and the right side to the sorted
portion of the main array. This method improves the performance
of the algorithm to be efficient for small arrays typically of size
lying from 10–50 elements [6]. Finally, the main idea of the work
that presented in [31], is based on inserting the first two elements
of the unordered part into the ordered part during each iteration.
This idea earned slightly time efficient but the complexity of the
algorithm still O(n2) [31]. However, all the cited previous works
have shown a good enhancement in insertion sort algorithm either
in worst case, in large array size or in very small array size. In spite
of this enhancement, a Quicksort algorithm indicates faster results
even for relatively small size array.

In this paper, a developed in-place unstable algorithm is pre-
sented that shows fast performance in both relatively small size

array and for high rate duplicated elements array. The proposed
algorithm Bidirectional Conditional Insertion Sort (BCIS) is well
analyzed for best, worst and average cases. Then it is compared
with well-known algorithms which are classical Insertion Sort
(IS) and Quicksort. Generally, BCIS has average time complexity
very close to O(n1.5) for normally or uniformly distributed data. In
other word, BCIS has faster average case than IS for both relatively
small and large size array. Additionally, when it is compared with
Quicksort, the experimental results for BCIS indicates less time
complexity up to 70%–10% within the data size range of 32–1500.
Besides, our BCIS illustrates faster performance in high rate dupli-
cated elements array compared to the Quicksort even for large size
arrays. Up to 10%–50% is achieved within the range of elements of
28-more than 3000,000. The other pros of BCIS that it can sort equal
elements array or remain equal part of an array in O(n).

This paper is organized as follows: Section 2 presents the pro-
posed algorithm and pseudo code, Section 3 executes the proposed
algorithm on a simple example array, Section 4 illustrates the
detailed complexity analysis of the algorithm, Section 5 discusses
the obtained empirical results and compares themwith otherwell-
known algorithms, Section 6 provides conclusions. Finally, youwill
find the important references.

2. The proposed algorithm BCIS

The classical insertion sort explained in [31–33] has one sorted
part in the array located either on left or right side. For each
iteration, IS inserts only one item from unsorted part into proper
place among elements in the sorted part. This process repeated
until all the elements sorted.

Our proposed algorithm minimizes the shifting operations
caused by insertion processes using new technique. This new tech-
nique supposes that there are two sorted parts located at the left
and the right side of the array whereas the unsorted part located
between these two sorted parts. If the algorithm sorts ascendingly,
the small elements should be inserted into the left part and the
large elements should be inserted into the right part. Logically,
when the algorithm sorts in descending order, insertion operations
will be in reverse direction. This is the idea behind the word
‘bidirectional’ in the name of the algorithm.

Unlike classical insertion sort, insertion items into two sorted
parts helped BCIS to be cost effective in terms of memory
read/write operations. That benefit happened because the length
of the sorted part in IS is distributed to the two sorted parts in
BCIS. The other advantage of BCIS algorithmover classical insertion
sort is the ability to insert more than one item in their final correct
positions in one sort trip (internal loop iteration).

Additionally, the inserted items will not suffer from shifting
operations in later sort trips. Alongside, insertion into both sorted
sides can be run in parallel in order to increase the algorithm
performance (parallel work is out of scope of this paper).

In case of ascending sort, BCIS initially assumes that the most
left item at array[1] is the left comparator (LC) where is the left
sorted part begin. Then inserts each element into the left sorted
part if that element less than or equal to the LC. Correspondingly,
the algorithm assumes the right most item at array[n] is the right
comparator (RC) which must be greater than LC. Then BCIS inserts
each element greater than or equal to the RC into the right sorted
part. However, the elements that have values between LC and RC
are left in their positions during the whole sort trip. This condi-
tional insertion operation is repeated until all elements inserted in
their correct positions.

If the LC and RC already in their correct position, there are no
insertion operations occur during the whole sort trip. Hence, the
algorithm at least places two items in their final correct position
for each iteration.



Download English Version:

https://daneshyari.com/en/article/4950438

Download Persian Version:

https://daneshyari.com/article/4950438

Daneshyari.com

https://daneshyari.com/en/article/4950438
https://daneshyari.com/article/4950438
https://daneshyari.com

