
Future Generation Computer Systems 70 (2017) 74–93

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Acceptance Test for Fault Detection in Component-based Cloud
Computing and Systems
Mounya Smara a,∗, Makhlouf Aliouat b, Al-Sakib Khan Pathan c,d, Zibouda Aliouat b
a Department of Computer Science, Faculty of Science, University of Ferhat Abbas Setif-1-, Setif, 19000, Algeria
b Laboratory of Network and Distributed Systems, Computer Science Department, University of Ferhat Abbas Setif-1-, Setif, 19000, Algeria
c Department of Computer Science and Engineering, Southeast University, Dhaka, Bangladesh
d Faculty of Computer and Information Systems, Islamic University in Madinah, Madinah al-Munawwarah, Saudi Arabia

h i g h l i g h t s

• Fault Detection in Component-based Cloud Computing using the Acceptance Test.
• Detection of transient hardware faults, software faults, and response-time failures.
• Theoretical comparison between the proposed framework and the existent strategies.
• Application of the Acceptance Test framework on the case study: Fire Control System.
• The efficiency of the proposed strategy is proved using the model-checker.

a r t i c l e i n f o

Article history:
Received 6 November 2015
Received in revised form
12 April 2016
Accepted 23 June 2016
Available online 26 July 2016

Keywords:
Fault detection
Component-based Cloud Computing
Recovery blocks
Acceptance Test
BIP framework

a b s t r a c t

Fault Detection is considered as one of themain challenges in large-scale dynamic environments and thus,
for maintaining the reliability requirements of Cloud and Mobile Cloud systems. Most of the popular
existing techniques for fault detection applied on the Cloud Computing environment in general, are based
on system-monitoring despite the extreme difficulty of keeping track of all machines with their huge
number in Cloud systems. In this paper, we propose a Fault Detection framework for the Component-
based Cloud Computing by using Recovery Blocks’ Acceptance Test. This framework aims to construct
Fail-Silent Cloud modules which have the ability of Self-Fault detection. In this, the detection process
of transient hardware faults, software faults, and response-time failures is performed locally on each
computing machine in the Cloud system. Background of the research issue, our mechanism, thorough
analysis, and appropriate case study are presented. The efficiency and practicality of the proposed
framework are proved by Safety verification using the model-checker.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Embedded Computing systems could be seen now almost ev-
erywhere in our daily life. They are found in household items, mul-
timedia equipment, in mobile phones as well as in cars, smart
munitions, satellites and so on. However, despite increasing hard-
ware capabilities, these mobile devices will always be resource-
constrained compared to fixed hardware. In order to mitigate
the hardware limitations on mobile and wearable devices, Mobile

∗ Corresponding author.
E-mail addresses: smara_mounya@yahoo.com (M. Smara), aliouat_m@yahoo.fr

(M. Aliouat), sakib.pathan@gmail.com (A.-S.K. Pathan), aliouat_zi@yahoo.fr
(Z. Aliouat).

Cloud Computing [1–6] allows users to use remote infrastructure
in an on-demand fashion. The size of the mobile market in con-
sumer and enterprise is poised to reach over 45 billion Dollars by
2016 [7].

Mobile Cloud Computing is defined as the availability of Cloud
Computing services in a mobile ecosystem [8]. Cloud Computing
[9,10] is a type of parallel and distributed computing system
which consists of a collection of inter-connected and virtualized
computers that are dynamically provisioned and presented as
one or more unified computing resource(s) based on Service-level
agreements (SLAs) established through negotiation between the
service provider and the consumers [9,11].

A Cloud application [11] is composed of a number of Cloud
modules. Each Cloud module has a virtual machine used to realize
its function and each function is composed of a set of Tasks. It

http://dx.doi.org/10.1016/j.future.2016.06.030
0167-739X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2016.06.030
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2016.06.030&domain=pdf
mailto:smara_mounya@yahoo.com
mailto:aliouat_m@yahoo.fr
mailto:sakib.pathan@gmail.com
mailto:aliouat_zi@yahoo.fr
http://dx.doi.org/10.1016/j.future.2016.06.030


M. Smara et al. / Future Generation Computer Systems 70 (2017) 74–93 75

is evident that Cloud Computing architecture, its layers and its
composition of components and services need to be designed as
web service components [12] based on well proven Component-
based Software Engineering. The Component-based Software
Engineering [13] is a reuse-based approach to define, implement
and compose loosely coupled independent components into
systems. Here, a component represents an entity that provides a
specific functionality. The components are expected to be scalable,
fault tolerant, manageable, and autonomous [14]. Several tools
are available for modeling heterogeneous embedded systems
founded on component-based models. One of them is BIP tool. BIP
(Behavior, Interaction, Priority) [15–20] is a tool for behavior-based
modeling of heterogeneous real-time components.

We could fairly state that applications developed on Mobile
Cloud systems are often critical in terms of human lives. For in-
stance, many such applications could be practically employed in
healthcare, military, or disaster management scenarios. Therefore,
these types of systems must be reliable; in the way that can of-
fer correct or acceptable services even in the presence of faults.
In other words, critical applications must satisfy the Safety prop-
erty [21]. Reliability is one of the main characteristics of Mo-
bile Cloud systems [22,5] but it is difficult to analyze due to its
characteristics of massive-scale service sharing, wide-area net-
work, heterogeneous software/hardware components and compli-
cated interactions among them. The failures that can occur in a
Mobile Cloud environment can be classified into two classes [23]:
Data failures and Computation failures. Data failures are due to the
exploitation of data whereas computation failures are due to hard-
ware faults, software faults or network faults. The response-time
failures can occur due to Data failures or Computation failures. In
this paper, we deal with transient hardware faults, software faults,
and response-time failures.

Fault tolerance techniques used in Cloud Computing [23–28]
are based on time redundancy or spatial redundancy which can
tolerate only hardware faults without dealingwith software faults.
According to our thorough investigation of the area, there is clearly
a lack of formal approach that rigorously relates Component-based
Cloud Computing with Software Fault Tolerance concerns.

Software fault tolerance mechanisms are based on design
redundancy [29]. Recovery blocks technique is a type of Forward
Recovery. It is based on the selection of a set of operations onwhich
recovery operations are based. Recovery blocks is composed of a
set of try blocks and an Acceptance Test. The Acceptance Test is
a section of program which is executed on exit from the try block
to confirm that it has performed acceptably [30,31]. A checkpoint
is used for saving the last correct system state; it is used in the
Recovery phase.

Our main objective is to incorporate Recovery Block’s Fault
Detection strategy in Component-based Cloud Computing in order
to be able to develop Cloud modules which are Self-Fault Detectors
using the Acceptance Test. In this paper, we propose a novel formal
framework for constructing models apt for software, transient
hardware and response time fault detection. Each Cloud module
in the Cloud application must have an Acceptance Test which can
validate its behavior. If the Cloud module behavior is correct or
acceptable, it would continue operation otherwise, and it will be
stopped immediately—then, we can say that we have a Fail-Silent
Cloudmodule. Just to clarify here a bit, a Fail-Silent system is a type
of system that either would provide the correct service, or would
not provide any service at all (i.e., would become silent). We will
use the semantics of BIP (Behavior, Interaction, Priority) [15–20] as
a Component-based framework with multi-party interactions.

A framework for fault detection in Component-based models
was first introduced in [32], but thatwas not used for Cloud system.
Here, unlike the previous work:

– A background of the existent strategies for fault detection in
Cloud systems with their strength and limitation is presented.

– The Acceptance Test framework is proposed for detection of
Cloud and Mobile Cloud faults such as: Transient hardware
faults, software faults, and response-time failures.

– Theoretical comparison between the proposed framework and
the existent strategies is presented.

– The proposed framework is then applied on aMobile Cloud case
study: Fire Control System.

– Time and space complexity of the Acceptance Test strategy are
estimated.

– A Safety verification by the model-checker is applied on the
deduced Fail-Silent Fire Control model to prove the efficiency
of the proposed strategy.

We have organized the rest of the paper as follows: following
the introduction, an overview of the existing strategies for failure
detection in Cloud Computing systems with their strength and
limitation is presented. Then, our proposition for fault detection
by using the Acceptance Test is introduced. First, some basic
concepts of BIP are described. After that, we describe our approach
for fault detection in Component-based Cloud modules. In this
section, we prove that we can ensure Safety property in Fail-Silent
components using the Acceptance Test. Then, we present how we
can construct Fail-Silent components from basic BIP components
(Atomic component, Composite component). Finally, we apply our
approach on Fire Control System as a case study. Time and space
complexity are calculated. Then, a Safety verification using the
model-checker is applied on the deduced Fail-Silent Fire Control
model to prove the efficiency of the proposed strategy. For all
the sections, appropriate analysis and discussions are presented
to highlight the effectiveness of our approach. Before concluding
the paper with future research directions, we present all the major
relevant works.

2. Failure detection in Cloud Computing systems

Failures in Cloud Computing systems are processed by using
two main strategies: Intrusion detection and Heartbeat/Pinging.

2.1. Intrusion and anomaly detection systems for cloud

IntrusionDetection Systems (IDSs) [33–37] are strongly adopted
in Clouds. Generally, IDSs are used for detection of network or hosts
attacks (e.g., Denial of Service, Buffer Overflow, Sniffer attacks).
They are based on behavior observation of the component and an
alarm is raised if an abnormal behavior is detected. They can be
grouped into two detection principles, namely misuse-based (or
Signature-based) and anomaly-based IDS.

2.1.1. Signature-based IDS
This kind of IDS recognizes intrusions and anomalies by

matching observed data with pre-defined descriptions of intrusive
behavior. Therefore, a signature database corresponding to known
attacks is specified a priori.

2.1.2. Anomaly-based IDS
The strategy of anomaly detection is based on the assumption

that abnormal behavior is rare and different from normal behavior,
and thus it tries to model what is normal rather than what
is anomalous. Anomaly detectors generate an anomaly alarm
whenever the deviation between a given observation at an instant
and the normal behavior exceeds a predefined threshold (see
Fig. 1). Anomaly Detection refers to the important problem of
finding non-conforming patterns or behaviors in live traffic data.
These non-conforming patterns are often known as anomalies.



Download English Version:

https://daneshyari.com/en/article/4950461

Download Persian Version:

https://daneshyari.com/article/4950461

Daneshyari.com

https://daneshyari.com/en/article/4950461
https://daneshyari.com/article/4950461
https://daneshyari.com

