
Applied Soft Computing 30 (2015) 72–82

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l ho me page: www.elsev ier .com/ locate /asoc

Robust heuristic algorithms for exploiting the common tasks of
relational cloud database queries

Tansel Dokeroglua, Murat Ali Bayirb, Ahmet Cosarc,∗

a Simsoft Computer Technologies, Middle East Technical University, Teknokent Bolgesi, 06800 Ankara, Turkey
b Microsoft, 1 Microsoft Way, Redmond, WA 98052, United States
c Computer Engineering, Middle East Technical University, 06800 Ankara, Turkey

a r t i c l e i n f o

Article history:
Received 20 April 2013
Received in revised form 10 August 2014
Accepted 14 January 2015
Available online 7 February 2015

Keywords:
Relational cloud database
Multiple-query optimization
Evolutionary computing
Branch-and-Bound
Hill Climbing

a b s t r a c t

Cloud computing enables a conventional relational database system’s hardware to be adjusted dynami-
cally according to query workload, performance and deadline constraints. One can rent a large amount
of resources for a short duration in order to run complex queries efficiently on large-scale data with vir-
tual machine clusters. Complex queries usually contain common subexpressions, either in a single query
or among multiple queries that are submitted as a batch. The common subexpressions scan the same
relations, compute the same tasks (join, sort, etc.), and/or ship the same data among virtual computers.
The total time spent for the queries can be reduced by executing these common tasks only once. In this
study, we build and use efficient sets of query execution plans to reduce the total execution time. This
is an NP-Hard problem therefore, a set of robust heuristic algorithms, Branch-and-Bound, Genetic, Hill
Climbing, and Hybrid Genetic-Hill Climbing, are proposed to find (near-) optimal query execution plans
and maximize the benefits. The optimization time of each algorithm for identifying the query execution
plans and the quality of these plans are analyzed by extensive experiments.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Cloud computing is creating a new market, DataBase as a Service
(DBaaS), that has a great potential to attract users ranging from
small businesses to very large enterprises seeking high perfor-
mance solutions. In addition to its high performance, lower cost of
ownership, quality of service guarantees, data privacy, scalability,
and elasticity are the other opportunities offered by this emerging
paradigm.

One of the biggest challenges that DBaaS providers have to
cope with is the request of users for continuously meeting the
service level agreements. Providing an illusion of infinite resources
with increasing database workloads is an NP-Hard optimization
problem where the tasks need to be scheduled optimally in
order to answer the required services [1,2]. Cloud database query
engines can take advantage of common tasks and efficiently man-
age the resources by using a well-known database optimization
technique, Multiple Query Optimization (MQO) [3–8]. Although
MQO requires significant search for the identification of common
tasks among queries, it has been successfully applied to complex

∗ Corresponding author. Tel.: +90 505 2370615; fax: +90 312 2105544.
E-mail address: cosar@metu.edu.tr (A. Cosar).

Online Analytical Processing (OLAP) queries that involve big data
processing and common tasks [9,10].

MQO has been studied on centralized databases for more than
30 years; however, solving the same problem for relational Cloud
databases has not been studied from the perspective of alternative
query plans (QP) [8,12,13]. Conventional query engines find the
fastest execution plans for single queries and try to execute them as
fast as possible on the other hand MQO can execute sets of queries
together in shorter times by using their alternative QPs.

In this study, we introduce four robust heuristic algorithms
(Branch-and-Bound, Genetic, Hill Climbing, and Hybrid Genetic-
Hill Climbing) that improve the total execution time of a set of
queries in a relational Cloud database by using alternative QPs that
have more sharable tasks. Locality of previously computed tasks
and concurrently executing sub-queries are optimized with the
proposed robust heuristic algorithms and used for the solution of
this problem.

Our contributions in this study can be listed as:

(1) MQO problem is formally adapted for relational Cloud
databases including an improved cost model with network
communication costs.

(2) Alternative QP generation methods for relational Cloud
databases, where the site locations of join tasks can be decided

http://dx.doi.org/10.1016/j.asoc.2015.01.026
1568-4946/© 2015 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.asoc.2015.01.026
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2015.01.026&domain=pdf
mailto:cosar@metu.edu.tr
dx.doi.org/10.1016/j.asoc.2015.01.026

T. Dokeroglu et al. / Applied Soft Computing 30 (2015) 72–82 73

intelligently to reduce communication costs, are developed and
experimentally evaluated.

(3) Heuristic Branch-and-Bound, Genetic, Hill Climbing, and
Hybrid Genetic-Hill Climbing algorithms are developed and
experimentally evaluated for solving the Cloud MQO problem.

In Section 2, information about the related work on Grid/Cloud
MQO techniques is given. Section 3 gives the formal definition of the
problem. Section 4 explains the distributed query engine. Section 5
presents our proposed algorithms that work with alternative QPs.
Section 6 discusses the experiments conducted for evaluating the
proposed algorithms. Finally our concluding remarks are given in
Section 7.

2. Related work

The MQO problem was first defined in 1980s and finding a global
optimal QP by using MQO was shown to be an NP-Hard problem
[8,16]. A detailed theoretical study of query scheduling, caching,
and pipelining in MQO can be found in [18]. Considerable amount
of MQO work has been done on relational databases [17,19,20].
The idea of using joint subexpressions has been applied to batch
execution of multiple related queries and efficient maintenance of
materialized views [49,50]. The studies in [16,51] considered these
optimizations and used only the best plans of queries, thus achiev-
ing less sharing (i.e. higher total cost) than that could be obtained by
using suboptimal QPs. Polat et al. provide heuristics and methods
for generating alternative QPs that will improve the performance
of MQO [14]. The execution time of a batch of queries is improved
by evaluating a common plan task once obtained by using a light-
weight and effective mechanism for detecting potential sharing
opportunities among QP tasks [46].

When we survey MQO on distributed/parallel databases, we can
note early research such as:

• Increasing inter-query locality by decomposing a query into
parallel sub-tasks so that a scheduler rearranges the QP tasks
execution order for maximizing the reuse of cached-data [21],

• Resource usage models to perform multiple query scheduling on
parallel query processing systems in order to reduce the response
times of queries [22],

• Dividing a query into sub-queries that can be executed in parallel
on many processors and enabling already computed (and cached)
sub-query results to be re-used for improving processing speeds
of new queries [20].

Mehta and DeWitt developed algorithms to take advantage of
intra-operator parallelism, used CPU loads and tuple production
rates of select and hash-join database operations for deciding on
the number of allocated processors and the assignment of database
operations to these processors [23]. Distributed query processing
middleware systems have also been extensively studied as a solu-
tion for data intensive scientific applications. MOCHA [25] was one
of the first database middlewares developed to execute database
queries over distributed data sources. MOCHA could move the code
required to process the query to the data storage site. In Beynon
[26], user-defined functions can be executed at data storage sites
to perform subsetting operations and many filter (e.g. aggregation)
operators can be run in parallel on a large number of computers.

Indexing the data at each server is an efficient method for dis-
tributed query optimization. R-trees are widely used to index and
integrate the back-end servers as a single query server. Parallel R-
trees, Master R-trees, and Master-Client R-trees are mechanisms
used for improving the performance of shared-nothing environ-
ments [29]. More specifically, the savings resulting from reusing

cached results have to be weighed against the service time and
extra storage cost and extra data access load imposed on the server
where the cached result is located. Mondal et al. used data migra-
tion to shift the workload from heavily loaded servers to lightly
loaded servers in shared-nothing environments [30]. Chen et al.
considered the network layer of the problem and reduced the com-
munication costs with a query reconstruction algorithm to enable
sharing of overlapped data through micro-machines that collabo-
rate for evaluating query batches [6].

IGNITE [11], OGSA-DQP [32], CoDIMS-G [33], and GridDB-Lite
are some of the important projects that focus on Cloud/Grid data
integration [34]. Except IGNITE, none of these systems has MQO
support.

Recently, studies have been performed for adapting traditional
query optimizers to Cloud computing. In [47], a classical query opti-
mizer is adapted to Cloud computing workloads where it uses a
partitioned database on a shared-nothing architecture. In [44], a
parallel data warehouse system optimizer is developed for sin-
gle queries by considering a rich space of execution alternatives
with bushy-tree plans instead of simply parallelizing the best serial
plan. Query optimization in Cloud environments can have different
goals unlike the traditional query optimizers and the search space
becomes much larger. In an interesting study, the scheduling of
data processing workflows on the Cloud is considered from the per-
spective of minimizing the completion time given a fixed budget
[48].

Although there exist some initial studies to integrate MQO tech-
niques into existing relational Cloud database query engines, to
our knowledge, there is no approach like ours to optimize a batch
of queries by employing a relational Cloud database query opti-
mizer which can produce and exploit alternative QPs. Recently,
there were two remarkable projects. Giannikis et al. developed a
new database architecture that is based on batching queries and
shared computation across many concurrent queries in a shared
disk, shared L3-cache, multi-core and multi-processor machine [9].
Their model does not try to generate any new alternative plans
for input queries. A framework is developed for a Cascade-style
Cloud query optimizer to enhance the performance by using MQO
techniques for massive data analysis scripts that contain common
subexpressions [45] but this approach differs from our technique
because new alternative plans are not generated and subexpression
costs are used for making optimization decisions only. In our study,
a data flow execution model (operator-centric) is used instead of
an iterator model, thus most of the mentioned systems cannot be
compared with ours.

A distributed query system, IGNITE, that is similar to ours, is cho-
sen for comparing with our system and modifications are done on
its architecture to it with the capability of alternative QP generation.

3. Problem formulation

In this section, we formulate the Cloud-MQO problem. A mul-
tiple query execution scenario in a relational Cloud database is
given, the symbols used throughout the study are explained and
the formal problem description is given.

3.1. Sample scenario

A sample relational Cloud database environment for the tpc-h
benchmark database can be seen in Fig. 1. Concurrently accessed
databases, queries, network, and the sites/processors are the main
elements of the Cloud computing environment. In this scenario,
there are 6 virtual machines connected via a network.

In Fig. 2, two different QPs are shown for Query 3 of tpc-h
database benchmark. QP1 scans the relations Customer at site S6,

Download English Version:

https://daneshyari.com/en/article/495047

Download Persian Version:

https://daneshyari.com/article/495047

Daneshyari.com

https://daneshyari.com/en/article/495047
https://daneshyari.com/article/495047
https://daneshyari.com

