
Future Generation Computer Systems () –

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Playing with state-based models for designing better algorithms
Dominique Méry
Université de Lorraine, LORIA, BP 239, 54506 Vandœuvre-lès-Nancy, France

h i g h l i g h t s

• We develop a translation of annotated programs into Event-B models.
• We extend the scope of translation for concurrent programs.
• We develop a combination of the refinement of Event-B models and the coordination paradigm.
• We illustrate techniques on case studies.

a r t i c l e i n f o

Article history:
Received 6 May 2015
Received in revised form
6 March 2016
Accepted 30 April 2016
Available online xxxx

Keywords:
Modeling languages
Verification
Refinement
Coordination
Algorithm

a b s t r a c t

State-based models provide a very convenient framework for analyzing, verifying, validating and
designing sequential aswell as concurrent or distributed algorithms. Each state-basedmodel is considered
as an abstraction, which is more or less close to the target algorithmic entity. The problem is then to
organize the relationship between an initial abstract state-based model expressing requirements and a
final concrete state-based model expressing a structured algorithmic state-based model. A simulation (or
refinement) relation between two state-based models allows to structure these models from an abstract
view to a concrete view. Moreover, state-based models can be extended by assertion languages for
expressing correctness properties as pre/post specification, safety properties or even temporal properties.
In this work, we review state-based models and play scores for verifying and designing concurrent or
distributed algorithms.We choose the Event-Bmodeling language for expressing state-basedmodels and
we show howwe can play Event-B scores using Rodin and methodological elements to guarantee that the
resulting algorithm is correct with respect to initial requirements. First, we show how annotation-based
verification can be handled in the Event-Bmodeling language andwe propose an extension to handle the
verification of concurrent programs. In a second step,we showhow important is the concept of refinement
and how it can be used to found amethodology for designing concurrent programs using the coordination
paradigm.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

State-based models play a central role in the verification,
validation and design of software-based systems. They provide
a very convenient and flexible framework for developing both
techniques and tools to improve quality of software-based
systems. We review seminal results on proving the correctness of
algorithms and we use the Event-B modeling language with the
Rodin environment for illustrating our contributions.

First, we review the classical annotation-based method [1–4],
known as Floyd–Hoare’s method, and report an experience with

E-mail address: dominique.mery@loria.fr.
URL: http://www.loria.fr.

MSc students for checking the correctness of sequential and con-
current programs by transformation of annotated algorithms into
state-based models in the Rodin environment. The transforma-
tion of annotated programs into state-based models is a very gen-
eral transformation with respect to safety properties; it allows to
state verification conditions as proof obligations of the Event-B re-
sulting machine and to obtain, for free, a platform for deductive
program verification. This first step shows that the design of
correct-by-construction parallel algorithms remains a tricky task
especially in the annotation process which is supposed to discover
invariants of concurrent programs. State-based models help con-
current and parallel programs to meet provers [5] and the Event-
B modeling language is a rich and extensible set-theoretical lan-
guage for handling properties as partial correctness and absence
of run-time errors. The Rodin platform offers an interactive proof
assistant and SMT solvers, which are discharging majority of

http://dx.doi.org/10.1016/j.future.2016.04.019
0167-739X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2016.04.019
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:dominique.mery@loria.fr
http://www.loria.fr
http://www.loria.fr
http://www.loria.fr
http://www.loria.fr
http://dx.doi.org/10.1016/j.future.2016.04.019

2 D. Méry / Future Generation Computer Systems () –

generated proof obligations. The remaining non-discharged proof
obligations require a specific interactive processing either formod-
ifying the program or for modifying the annotations. The possi-
ble remaining non-discharged proof obligations demand a specific
care of the user and this observation leads us to reconsider the re-
finement in the design of parallel programs using informations of
the design and to reformulate the PCAM methodology based on
state-based models for addressing practical concurrent and paral-
lel programs [6,7].

Second, from the previous experience, we illustrate how the
refinement can improve and facilitate the verification process by
relating state-based models. We describe a simple extension of
the call-as-event paradigm [8,9] to handle the design of concurrent
programs in the coordination [10]-based approach. More precisely,
I. Foster [6] has introduced the PCAM methodology for designing
concurrent programs and we combine the refinement and
the coordination paradigm for deriving state-based models
identified in the design of concurrent programs following the
PCAM approach. PCAM is a design methodology for parallel
programs and starting with a problem specification, it develops a
Partition, determines Communication requirements, Agglomerate
tasks, and finally Maps tasks to processors: PCAM stands for
Partition, Communication, Aggregation, Mapping. These four
transformations can be interpreted as refinement step preserving
safety properties of state-basedmodels, which communicate using
the coordination paradigm. Refinement allows to progressively
structure state-based models with the help of the coordination
technique and to enrich the current invariant.

The refinement-based or stepwise development of algorithms
has been first initiated in the seminal works of Dijkstra [11],
Back [12] or Morgan [13]. Next, UNITY [14] has proposed a
rich framework for designing distributed algorithms combining
a simple temporal logic for expressing required properties and a
simple language for expressing actions modifying state variables
under fairness assumption. TLA/TLA+ [15]1 proposes a general
modeling language based on a temporal logic of actions combined
with a set-theoretical modeling language for data and is extended
by a specific algorithmic language namely PlusCal [16],2 which is
translated into TLA+ and which is closer to the classical way to
express a distributed algorithm.

More recently, Event-B [17,18] provides a technique for
incremental and proof-based development of reactive systems and
is supported by open tools [19,20]. It integrates set-theoretical
notations, a first-order predicate calculus and structures called
machines as models; it includes the concept of models refinement
expressing that, if a machine M refines a machine N, M can
only behave in a way that corresponds to the behavior of M. An
Event-B machine models a reactive system i.e. a system driven
by its environment and reacting to its stimuli. An important
property of thesemachines is that its events preserve the invariant
properties defining a set of reachable states. The Event-B method
has been developed from the classical B method [21] and it offers
a general framework for developing the correct-by-construction
systems by using an incremental approach for designing the
models by refinement. Refinement [11,12] is a relationship relating
twomodels such that onemodel is refining or simulating the other
one. When an abstract model is refined by a concrete model, it
means that the concrete model simulates the abstract model and
that any safety property of the abstract model is also a safety
property of the concrete model. In particular, the concrete model
preserves the invariant properties of the abstract model.

1 TLA stands for Temporal Logic of Actions and TLA+ stands for TLA+.
2 PlusCAL (formerly called +CAL) is an algorithm language based on TLA+ and a

PlusCal algorithm is translated to a TLA+ specification.

UNITY [14] contributes to the design of concurrent programs by
combining actions systems, temporal logics and refinement. The
contribution of UNITY is not only technical but also methodologi-
cal. The action system language proposes a very simple way to ex-
press computations and it emphasizes on the role of the abstrac-
tion in the design of concurrent programs: the development should
start by a set of actions modeling the target concurrent system
without the complex syntactical entities involved in the concur-
rent programming. The choice is to use a simple programming lan-
guage and to postpone the real programming language in themap-
ping phase. The main problem of UNITY is that it remains a formal
approach without effective environment for assisting the user; the
UNITY modeling language is too rich and includes liveness prop-
erties as well as fairness assumption. Grasp all, lose all would be
a sentence for warning users to use a too complex modeling lan-
guage and to have to manage too many features when progress-
ing. Our solution is to restrict the modeling language by consider-
ing safety properties and by addressing issues on termination as
proposed by Abrial, using the convergent events of Event-B. Our
target applications require a simple expression of fairness. Further
improvements are possible as M. Poppleton and myself [22] have
demonstrated for population protocols.

The Gamma [23] model develops the chemical program-
ming [24] and the rule-based programming; it allows a simple de-
sign of complex problems and is based on the use of multisets
as working data structures. Gamma and UNITY are based on sim-
ple programming constructs to help the designer to focus on the
correctness of the developed programs and to delegate questions
on the parallel architecture in final steps of development. Gamma
aims to develop amethodology for simplifying the construction of
concurrent programs but is not proposing an incremental process
for deriving the finalmodel aswell as the invariant. Blass andGure-
vich [25] propose a formulation of parallel algorithms in the ASM
framework and introduce concepts as ken and proclets with pos-
tulates for proving the parallel thesis. Their work is related to the
parallel computingmodel rather than to the parallel programming
model, which is our objective.

In the same direction, I. Foster [6] introduces the PCAM
methodology which is based on the coordination paradigm and a
decomposition of the stages for designing a concurrent program.
The objective is to produce real concurrent programs in a real
programming language from a systematic analysis of the problem.
The two first stages of PCAM concern the identification of the set
of tasks and the communications among tasks; they can be made
more systematic and can be expressed using a combination of
the coordination paradigm and the refinement in Event-B. It is
why we are stating that we play with state-based models using
patterns for deriving concurrent programs. These patterns are
called archetypes [26] by Massingill and Chandy. These different
approaches show the importance of separating concerns and to
develop specific proof-based patterns combining the refinement
and another paradigm as, for instance, we did with the call-as-
event approach [8,9], combining the refinement and the recursivity
or the service-as-event paradigm combining the refinement and
the temporal logic [27]. In the two last experiences, we have
facilitated the discovery of invariants and the proof process.

Having motivated our objectives, we organize the paper as
follows. Section 2 is introducing the Event-B modeling language.
Section 3 develops a systematic translation of annotated sequential
algorithm into an Event-B model for checking the correctness of
the annotation and for deriving partial correctness of the annotated
algorithm. Section 4 is an extension of the transformation
to concurrent programs. Section 5 is using the refinement
together with the coordination paradigm for designing concurrent
programs. Section 6 presents conclusion and future works.

Download English Version:

https://daneshyari.com/en/article/4950517

Download Persian Version:

https://daneshyari.com/article/4950517

Daneshyari.com

https://daneshyari.com/en/article/4950517
https://daneshyari.com/article/4950517
https://daneshyari.com

