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HIGHLIGHTS

o We proposed a HPC methodology to couple multiscale applications.

o We presented its design and implementation and we measured its performance.

o We showed that its performance is comparable to the MPI native one.
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Multiscale, multi-physics applications are central to solve the increasing number of important scientific
challenges. Computationally speaking, the difficulty is to combine high performance computing with
the need to couple various codes or solvers, each representing a different scale or a different physical
process. In this paper, we present MUSCLE-HPC a new HPC implementation of MUSCLE-2, a previously
developed Multiscale Coupling Library and Environment. We present its design and implementation

and we demonstrate its advantages compared to MUSCLE-2. We conduct a performance comparison
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through a tightly coupled MPI application use-case. Our results indicate that using MUSCLE-HPC to couple
submodels within the same HPC cluster can lead to better computing performance comparable to a native
MPI execution and can, thus, reduce the coupling overhead.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, the landscape of High Performance Computing
(HPC) resources tends to evolve towards heterogeneous architec-
tures, combining within the same machine CPU-optimized cores,
large-memory cores and GPU’s. At the small scale, cores are orga-
nized as shared memory systems, whereas, at large scale they offer
adistributed memory model. As HPC resources become more pow-
erful, computational scientist addresses more challenging prob-
lems. Multiscale, multiphysics applications are a rising field, that
not only require high performance computation, but also new soft-
ware solutions to match the heterogeneity of the applications with
that of the current HPC architectures.

The classical HPC approach, based on monolithic codes can
no longer offer the flexibility to build and maintain sophisticated
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multiscale, multiphysics applications. The reason is that they in-
volve different processes (representing various natural phenom-
ena) which require several multidisciplinary teams collaborating
together, and different numerical solvers. A typical multiscale ap-
plication contains various components interacting with each other
and acting at different spatial and temporal scales. These compo-
nents are often developed with different programming languages
and require various computing resource architectures and hard-
ware configurations, such as CPU (shared or distributed memory),
GPU, cloud resources, supercomputers, etc. It is therefore clear
that, in addition to the computing resources, there is a need for a
formalism and a methodology to optimally design, maintain and
run this kind of applications on modern heterogeneous parallel
infrastructures. This question is central to the recent European
project ComPat [1] whose goal is to define and implement mul-
tiscale computation patterns on HPC resources.

Most of the existing frameworks to develop and couple
multiscale applications are rather application-oriented tools and
not generic enough to be applied to other applications. A recent
review [2] shows that existing multiscale projects tend to use a
variety of approach to develop and couple their multiscale codes,
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Fig. 1. The different steps to design, program, implement and run a multiscale application with the MMSF developed in the MAPPER project.

mostly using hand-written scripts and run computation on a single
machine.

There are few frameworks that propose generic tools and con-
cepts to develop and run multiscale applications on HPC infras-
tructure. In [3] a Multiscale Universal Interface (MUI) framework
is presented with the aim to facilitate the coupling of different
numerical solvers with an independent data interpretation ap-
proach. MUI provides a set of C++ classes and interfaces to de-
velop components and facilitates the exchange of information
across solvers by letting them push and fetch data. Data transfer is
done through using fetch()/push() methods which are MPI based
point-to-point non-blocking send and blocking receive methods.
OASIS coupler [4] is another framework developed within the Eu-
ropean project IS-ENES2 with the purpose to couple several nu-
merical codes (solvers) representing different components of the
climate system. This framework offers a coupling library to inter-
face independent parallel codes together in a generic way. Some
other works aimed to offer tools to perform cross-site MPI execu-
tion over different cluster sites. This amounts to provide a trans-
parent mechanism for inter-sites process communication with a
lower performance overhead. MPICH-G2 [5] and MPIg [6] are two
successful attempts that used the Globus Toolkit services [7] to
perform cross-site executions. They enable the user to run par-
allel code across multiple and heterogeneous clusters sites using
the same command as in parallel machine. QCG-OMPI [8] is an-
other tool which uses the QosCosGrid [9] grid-level extension of its
runtime environment to address connectivity issues between clus-
ter sites. It supports MPI run across a federation of clusters. QCG-
OMPI allows direct communications between processes whenever
it is possible. In the case of Firewall restriction, communications
are relayed through a proxy service installed at each cluster site.
In the same perspective, MPWide [10] is a C++ light-weight com-
munication library for performing message passing between su-
percomputers. This API is easy to install and provides a superior
communication performance compared to the previous cross-side
tools.

The above frameworks propose programming libraries to
couple multiscale applications but do not provide a theoretical
approach to better describe and understand the multiscale
coupling. However, they reflect the current need of the scientific
community for new frameworks that target the programming and
running of multiscale applications on HPC resources, especially,
connecting MPI-based codes together.

The MAPPER [11] European project addressed running mul-
tiscale applications on the European computing infrastructure
(EGI[12] and PRACE [13]). The objective of this project was to pro-
vide a formalism and a methodology to design, couple and run mul-
tiscale applications on distributed HPC infrastructures. This project
came up with a framework, coined the Multiscale Modeling and Sim-
ulation Framework (MMSF) [ 14,15], offering a theoretical method-
ology and a programming paradigm. Briefly, as depicted in Fig. 1,
a first scale-aware separation step consists in decomposing a real
phenomena into several single time/space scale processes (called
submodels) and defines the interactions between them. A sub-
model can be seen as the adequate numerical model capable of
computing/simulating a given real phenomena on a defined spa-
tial region (called domain) during a given period of time. A given
submodel can be abstracted by a generic Sub-Execution Loop (SEL)
composed of limited set of operators: Initialization (Fjpi), Solver
(S), Boundary (U), intermediate Observation (0;) and final Obser-
vation (Oy). The initialization of the computation variables is done
in the Fyp; operator. At each iteration the S operator solves the sub-
model domain and U provides the boundary conditions. The O; and
O¢ operators compute and deliver the desired physical quantities
from the current values of the computation variables. Therefore,
the coupling between submodels amounts to a data communica-
tion between their corresponding operators, as illustrated in Fig. 2,
for two very common couplings (see [14] for the coupling tem-
plates defined in the MAPPER methodology).

The coupling template of the left-hand side of Fig. 2 illustrates
the coupling of two submodels having a time scale overlap. In this
case, the intermediate observation O; of each submodel is needed
to update the boundary condition (U) of the other submodel. On
the right-hand side of Fig. 2, the coupling template illustrates
the coupling of two submodels having a time scale separation.
It means that for each time iteration of submodel 1, a complete
execution of submodel 2 is needed. Therefore, the final observation
O¢ of submodel 2 is needed to solve an iteration (S operator) of
submodel 1. Note that here the information goes to S which is
typically the case when the domain of submodel 2 is a sub-domain
of submodel 1. If the domains are different, the coupling would go
from O¢ to S to provide a proper boundary condition to submodel 1.

Data communication is performed through high level, reusable,
scale-aware software components (called conduits, filters and
mappers) that implement the scale bridging methods. A conduit
is an abstract notion that represents the link between SEL
operators. A mapper is a component that receives data from one
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