
Future Generation Computer Systems 67 (2017) 152–162

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Scalable and efficient data distribution for distributed computing of
all-to-all comparison problems
Yi-Fan Zhang a, Yu-Chu Tian a,b,∗, Wayne Kelly a, Colin Fidge a

a School of Electrical Engineering and Computer Science, Queensland University of Technology, GPO Box 2434, Brisbane QLD 4001, Australia
b College of Information Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China

h i g h l i g h t s

• New insights into distributed computing of all-to-all comparison problems with big data.
• Formulation of data distribution of all-to-all comparisons as an optimization problem.
• A heuristic algorithm for scalable and efficient data distribution and task scheduling.
• Demonstration of the algorithm in improved storage saving, data locality and execution time.

a r t i c l e i n f o

Article history:
Received 11 October 2015
Received in revised form
27 May 2016
Accepted 6 August 2016
Available online 9 September 2016

Keywords:
Distributed computing
Big data
All-to-all comparison
Data distribution

a b s t r a c t

All-to-all comparison problems represent a class of big data processing problems widely found in many
application domains. To achieve high performance for distributed computing of such problems, storage
usage, data locality and load balancing should be considered during the data distribution phase in the
distributed environment. Existing data distribution strategies, such as the Hadoop one, are designed for
problemswithMapReduce pattern and do not consider comparison tasks at all. As a result, a huge amount
of data must be re-arranged at runtime when the comparison tasks are executed, degrading the overall
computing performance significantly. Addressing this problem, a scalable and efficient data distribution
strategy is presented in this paper with comparison tasks in mind for distributed computing of all-to-all
comparison problems. Specifically designed for problems with all-to-all comparison pattern, it not only
saves storage space and data distribution time but also achieves load balancing and good data locality for
all comparison tasks of the all-to-all comparison problems. Experiments are conducted to demonstrate
the presented approaches. It is shown that about 90% of the ideal performance capacity of the multiple
machines can be achieved through using the approach presented in this paper.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Data-intensive computing [1] with a very large number of
big data sets can be a great challenge in service computing for
both commercial applications and scientific investigations. For
these big data problems, a huge amount of data needs to be
stored, retrieved, analyzed and visualized within a period of time
acceptable to the users [2,3]. This demands significant resources
of computing power, memory and storage spaces, and network
communications. While distributed computing systems provide

∗ Corresponding author at: School of Electrical Engineering and Computer
Science, Queensland University of Technology, GPO Box 2434, Brisbane QLD 4001,
Australia.

E-mail address: y.tian@qut.edu.au (Y.-C. Tian).

a general platform to solve large-scale computing problems,
improving the computing performance for large-scale and data-
intensive computing problems is an emerging requirement.

Among various big data processing problems, all-to-all com-
parison problems are widely found in many application domains
such as machine learning, data mining, information management,
bioinformatics and biometrics. A typical example is the calcula-
tion of covariance matrix for high-dimensional data in machine
learning. In data mining, the computation of similarity matrix is
a critical step for clustering and classification. It gives all pairwise
similarities or dissimilarities between the objects under consid-
eration [4]. The experiments by Perera [5] computed the cosine
similarity between 8192 feature vectors. Mapping the ontologies
Molecular Functions and Biological Processes from Gene Ontol-
ogy with 10,000 and 20,000 concepts, respectively, involves com-
parisons of about 2 × 108 pairs of entities [6]. In bioinformatics,

http://dx.doi.org/10.1016/j.future.2016.08.020
0167-739X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2016.08.020
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2016.08.020&domain=pdf
mailto:y.tian@qut.edu.au
http://dx.doi.org/10.1016/j.future.2016.08.020


Y.-F. Zhang et al. / Future Generation Computer Systems 67 (2017) 152–162 153

phylogenetic relationships are inferred through comparing gene
sequences of different species [7]. Sequence alignment, clustering
analysis [8] and recently investigated global network alignment [9]
are typical all-to-all comparison problems in computational biol-
ogy and bioinformatics.

All-to-all comparisons represent a typical computing pattern,
which focuses on processing a large number of large- or small-
size data files. In a general formulation of the all-to-all comparison
problems, each data item of a data file needs to be compared with
all data items of the other data files in the data set. Therefore,
the all-to-all comparison computing patten is fundamentally
different from the MapReduce computing pattern [10], which has
been implemented in Hadoop with wide applications in big data
processing [11]. If the number of data files in a data set or the
number of data items in a data file is big, the scale of the required
computation for all-to-all comparisons becomes massive [12].

Efforts have been made to address all-to-all comparison
problems previously [13–18]. Some solutions have been proposed
for special-purpose all-to-all comparison problems such as the
popularly used BLAST [19] and ClustalW [20], or for different types
of computing architectures with GPUs [16] or sharedmemory [21].
However, these solutions require that all data files be deployed to
each of the nodes in the system.While distributingwhole data sets
everywhere is conceptually easy to implement, it causes significant
time consumption and communication cost and demands a huge
amount of storage space. Therefore, the data distribution strategy
from these previous solutions is not scalable to the big data
processing problems considered in this paper.

In addition to these specific solutions, some computing frame-
works are also widely used to process big data problems in dis-
tributed environments [22–25]. Enabling distributed processing of
large data sets across clusters of commodity servers, Hadoop [11]
is designed to scale up from a single server to thousands of
machines. With fault tolerance, it can achieve high computing
performance for distributed computation that well matches the
MapReduce computing pattern. However, the Hadoop distributed
file system (HDFS) and its data distribution strategy are inefficient
for all-to-all comparison problems due to the completely different
computing pattern involved.

The main contribution of this paper is a scalable and efficient
data distribution strategy for a class of all-to-all comparison
problems, in which all input data files have the same or similar
size and thus comparison tasks have the same or similar execution
time. The strategy is developed with consideration of storage
usage, data locality and load balancing of distributed computing
tasks. This paper has substantially extended our preliminary
studies in a conference paper [12] from four aspects: new insights
into the challenges, reformulation of the problem, refinement of
the data distribution strategy, andmore experimental studies. This
will be summarized at the end of Section 2 on Related Work.

The paper is organized as follows. Section 2 reviews related
work and motivates the research. Section 3 formalizes all-to-all
comparison problems and identifies the challenges of data distri-
bution. This is followed by Section 4 to formulate the data distri-
bution problem as an optimization problem. Providing a heuristic
solution to the optimization problem, our new data distribution
strategy is presented in Section 5, and is experimentally demon-
strated in Section 6. Finally, Section 7 concludes the paper.

2. Related work and motivations

Several approaches have been developed to address specific
all-to-all comparison problems in bioinformatics. All-to-all com-
parisons are a key calculation stage in Multiple Sequence Align-
ment (MSA) [26] and studying of phylogenetic diversity in protein
families [27]. In general, the computing of these bioinformatics

problems includes the calculation of a cross-similarity matrix be-
tween each pair of sequences [28,29].

Data intensiveness describes those applications that are I/O
bound or with a need to process large volumes of data [2,10].
Compared with computing-intensive problems, applications of
all-to-all comparison problems devote most of the processing
time to I/O and movement for a massive amount of data [30].
Therefore, to improve the performance of data-intensive problems,
the distribution of all the data sets needs to be well considered.

To process all-to-all comparison problems, various distributed
systems and runtime libraries have been used. Heitor and
Guilherme [13] proposed a methodology to parallelize a multiple
sequence alignment algorithm by using a homogeneous set of
computers with the Parallel Virtual Machine (PVM) library. In
their work, a detailed description of the modules was provided
and a special attention was paid to the execution of the multiple
sequence comparison algorithm in parallel. Macedo et al. [14]
proposed an MPI/OpenMP master/slave parallel strategy to run
the DIALIGN-TX algorithm in heterogeneousmulti-core clusters. In
their research, different task allocation policies were compared to
determine the appropriate choice. All these approaches distribute
all data to each of the computing nodes in the cluster, leading to
inefficiencies in data distribution and storage. Our work in this
paper aims to avoid such inefficiencies.

Meng and Chaudhary [15] presented a heterogeneous comput-
ing platform through a Message Passing Interface (MPI) enabled
enterprise computing infrastructure for high-throughput biologi-
cal sequence analysis. In order to achieve load balancing, they dis-
tributed the workload based on the hardware configuration. The
whole database is split intomultiple nearly-equal sized fragments;
and then each of the computing nodes is assigned a number of
database fragments according to its processing capacity. However,
in practical computing of all-to-all comparison problems using
their approach, data transmissions among the computing nodes
cannot be avoided at runtime. This drawback will be overcome in
our work presented in this paper.

Xiao et al. [16] proposed a design and optimization of the BLAST
algorithm in a GPU–CPU mixed heterogeneous system. Due to the
specific architecture of the GPU, their implementation can achieve
a six-fold speed-up for the BLAST algorithm. GPUs were also used
for a parallel implementation of MAFFT for MSA analysis [26]. In
the work by Torres et al. [31], they were configured for exact
alignment of short-read genetic sequences. To accelerate the next
generation long read mapping, Chen et al. made use of FPGA
hardware to speed up sequence alignment [32]. In comparison
with all those hardware-dependent implementations, our work in
this paper does not rely on specific hardware.

Several approaches were also developed for load balancing
in distributed computing of all-to-all comparison problems. One
version of parallel all-to-all comparison of genome sequences was
carried out by Hill et al. [17]. The main intention of the work
was to provide load balancing among the clusters by dividing the
comparisonmatrix into rows and then dynamically assigning these
rows to different nodes. Gunturu [18] proposed a load scheduling
strategy, which depends on the length of the sequence and the
number of processors in the network. They assumed that all
the processors in the network already had both sequences to be
compared in their localmemory. Ourwork in this paper distributes
data to the computing nodes with consideration of the computing
tasks, thus avoiding this assumption.

Recently, efforts have beenmade to use computing frameworks
for all-to-all comparison problems. All-pairs is an abstraction
designed by Moretti et al. [33] for data-intensive computing on
campus grids. It focuses on providing an abstraction for users to
deal with all-to-all comparison problems. To give each comparison
task the required data, a spanning tree method is proposed to
deliver all data to every node efficiently.



Download English Version:

https://daneshyari.com/en/article/4950538

Download Persian Version:

https://daneshyari.com/article/4950538

Daneshyari.com

https://daneshyari.com/en/article/4950538
https://daneshyari.com/article/4950538
https://daneshyari.com

