Future Generation Computer Systems 67 (2017) 430-440

Contents lists available at ScienceDirect 4
FiGICIS
Future Generation Computer Systems =
journal homepage: www.elsevier.com/locate/fgcs e

Multi-GPU-based detection of protein cavities using critical points
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HIGHLIGHTS

e CriticalFinder is the first multi-GPU-based cavity detection algorithm.

o CriticalFinder is the first surface-based cavity detection algorithm that produces a meaningful, coarse cavity segmentation.

o CriticalFinder sustains on the theory of critical points (i.e., Morse theory).
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Protein cavities are specific regions on the protein surface where ligands (small molecules) may bind. Such
cavities are putative binding sites of proteins for ligands. Usually, cavities correspond to voids, pockets,
and depressions of molecular surfaces. The location of such cavities is important to better understand
protein functions, as needed in, for example, structure-based drug design. This article introduces a
geometric method to detecting cavities on the molecular surface based on the theory of critical points. The
method, called CriticalFinder, differs from other surface-based methods found in the literature because it
directly uses the curvature of the scalar field (or function) that represents the molecular surface, instead
of evaluating the curvature of the Connolly function over the molecular surface. To evaluate the accuracy
of CriticalFinder, we compare it to other seven geometric methods (i.e., LIGSITESS, GHECOM, ConCavity,
POCASA, SURFNET, PASS, and Fpocket). The benchmark results show that CriticalFinder outperforms
those methods in terms of accuracy. In addition, the performance analysis of the GPU implementation

CUDA of CriticalFinder in terms of time consumption and memory space occupancy was carried out.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Many biological processes in life sciences, in particular those
involving drug interactions and protein docking, occur in water.
The interaction between water and molecule can tell much
information about the shape of a molecule, including the location
of its binding sites. As Mezey noted in [1], this is of great
importance to research in chemistry, biophysics, medicine, and
nano-technology. A better interpretation and identification of such
regions on a molecular surface can greatly help in discovering new
drugs. Hence, the identification of those binding sites is often the
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first step in the study of protein functions, as in the structure-based
drug design.

However, many small molecules (i.e., ligands) can bind to a
given protein, depending on the number of binding sites on its
molecular surface. It happens that, as noted by Henrich et al.
[2], checking whether a certain molecule can bind to a particular
protein takes a lot of time in lab. While, in general, binding
sites correspond to concave, cleft or tunnel-shaped regions on
a protein surface (cf. Kawabata and Go [3]), called pockets or
cavities, not all cavities end up being binding sites for small ligands.
Thus, detecting binding sites depends on efficient computational
algorithms to locate all cavities on the molecular surface.

So, in this paper, we describe a method to identify the cavities
on the protein surface as tentative binding sites for ligands. The
novelty of the algorithm lies in directly evaluating the curvature of
the scalar field (or function) that describes the molecular surface,
instead of evaluating the curvature of the Connolly function [4]
or the Mitchell-Kerr-Eyck function [5] over the molecular
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surface. This provides us with an advantage over state-of-the-art
techniques. In fact, the technique is more robust in identifying
candidate cavities because the curvature can be evaluated not only
on the protein surface, but also at any point of the domain of the
scalar field from eigenvalues of the Hessian matrix; hence, we are
able to identify the critical points of the scalar field.

Indeed, CriticalFinder is the first surface-based method to
succeed in finding a meaningful segmentation of a molecular
surface into cavities and saliences. More specifically, our method
relies on the theory of critical points (also called Morse theory)
to identify cavities on the protein surface. While some research
works have already tried to use curvature information (see, for
example, Natarajan et al. [6]), the resulting segmentations did
not prove effective for cavity detection purposes, because their
charts (or segments) do not necessarily match protein cavities as
tentative binding sites. Furthermore, to the best of our knowledge,
CriticalFinder is the first cavity detection algorithm to take
advantage of a loosely-coupled GPU cluster of computers equipped
with Nvidia Tesla K40 graphics cards, over a local area network
(LAN), to identify cavities on protein surfaces.

The remainder of our paper is organized as follows. Section 2
briefly surveys the most closely related work published in the
literature. Section 3 describes the fundamentals of scalar field
theory and theory of critical points underlying our algorithm.
Section 4 describes our algorithm in detail, as well as its
implementation. Section 5 briefly describes our technique to
triangulate and visualize protein surfaces. Section 6 discusses the
theoretical complexity of the algorithm. Section 7 describes the
methodology followed in the optimization of the CUDA code.
Section 8 contains the most relevant results produced by our
method, including a comparison to other well-known algorithms
found in the literature. Section 9 discusses the main conclusions,
while providing relevant hints for future work.

2. Prior work

Intuitively, cavities (also called pockets) are concavities on
protein surfaces, although their geometrical definition is not
straightforward [3]. Indeed, cavities range from small spherical
invaginations to deep curved or linear clefts in the protein [7].
Interestingly, researchers have observed that ligands (drugs,
in particular) commonly bind into the largest and/or deepest
concavity on the protein surface [8]. On average, such cavity might
be three times as large as the ligand, which shows how hard it is to
characterize what a protein cavity (its boundary) really is.

In spite of this ambiguity in defining the boundaries of protein
cavities, most works in the literature call attention to two
main families of methods to detect cavities of proteins: energy-
based and geometry-based [9]. Energy-based methods calculate the
energy that results from the interaction between protein atoms
and a small-molecule probe, whose value dictates the existence or
not of a cavity. In turn, geometry-based methods aim at detecting
solvent accessible regions of the protein surface using geometric
criteria. Interestingly, as noted by Schmidtke et al. [10], both
families of methods perform quite well detecting around 95% of
the known cavities. Additionally, the geometry-based methods are
faster and more robust against structural variations or missing
atoms/residues in the input data concerning proteins than the
energy-based algorithms, particularly in a context of a large-scale
prediction of potential binding cavities [10]. However, methods
based on geometry are hardly able to distinguish between different
types of binding sites, and tend to fail when the larger cavities do
not correspond to binding sites [11]. This agrees with Laskowski
et al. [12], who noted that the ligand binds to the largest cavity in
over 83% of the proteins.

In fact, the geometric methods are agnostic in relation to the
type of cavity, since they all assume that cavities are depressions
of the protein surface; as a consequence, they focus on the
depth of the cavity - where the solvent lies in - not on the
type of cavity. Since CriticalFinder is a geometric method, we
will only discuss geometry-based methods from now on. In
general, geometry-based methods can be divided into three main
categories: grid-based, sphere-based, and tessellation-based [13].
Grid-based methods use an axis-aligned 3D grid embedded in the
domain D e R3 that encloses a given molecule, as well as an
integer density map that determines if each grid node (or voxel)
is outside, inside, or on the protein surface. Then, they use voxel
clustering to collect relevant voxels into cavities; more specifically,
a cavity is a cluster of outside voxels that are bracketed by on
voxels in a number of directions. We refer the reader to [14-19]
for further details about grid-based methods. In sphere-based
methods, probe spheres play the same role as voxels in grid-based
methods. Therefore, a cavity is conceptualized as a set of probe
spheres which remain inside without slipping out, as described
in [20-24]. Tessellation-based methods build up on the concept of
tessellation, as is usual in computational geometry. Tessellation is
a generalization of triangulation (e.g., Delaunay triangulation), in
the sense that it also embraces the concept of Voronoi diagram,
also called Voronoi tessellation. These methods have their roots in
the theory of alpha shapes [25-27]. An alpha shape of a molecule is
a triangulation that uniquely decomposes the space occupied by its
atoms [28], while capturing the shape of the molecule itself [29].

On the other hand, the surface-based methods constitute a
less known, but emergent, category of methods that explore the
geometric properties of the protein surface to identify its cavities,
such as curvature. But, using curvature to identify protein cavities
is not an easy task, largely because the detection of cavities as
putative binding sites requires a zonal - rather than local - shape
analysis that goes beyond the neighborhood of each surface point.
In the past, the Connolly function was used to decompose the
molecular surface into convex, concave, and saddle patches [4].
However, the resulting surface segmentation was too fine, i.e., far
from the coarse surface segmentation into binding cavities. In
order to solve this problem, Natarajan et al. [6] introduced a
new Morse theory-based method for segmentation of molecular
surfaces, which uses a variant of the atomic density function
originally introduced by Mitchell et al. [5]. By simplifying such
atomic density function, neighbor segments merge into larger
segments, so that cavities (and also saliences) become noticeable
at progressively coarser resolutions. However, there is no evidence
that the identified cavities correspond to protein cavities provided
by any ground-truth database of binding sites (e.g., LigASite
at http://ligasite.org/). Likewise, Exner et al. [30] tried to take
advantage of the global curvatures due to Zachmann et al. [31] to
describe larger surface segments. Still, it is not clear whether the
discovered segments match ground-truth binding sites.

In a marked distinction to previous work, we believe that
the curvature analysis must be applied to the scalar field (or
function) that describes the surface, rather than to the Connolly or
Mitchell-Kerr-Eyck functions defined over the molecular surface.
Our argument is that cavities are in the vicinity of critical
points (i.e., minimum, maximum, and saddle points) of the scalar
field that features the molecular surface; hence we named our
method CriticalFinder. It is a surface-based algorithm that has
been designed to entirely run on a loosely-coupled GPU cluster
based on the CUDA architecture. Apart from CriticalFinder, the
only automatic cavity detection algorithm that entirely runs on
GPU is due to Lo et al. [32], but it uses the Connolly function
for segmentation of the molecular surface, with all the inherent
shortcomings aforementioned. Furthermore, their method runs on
a single GPU, while ours can scale to many GPUs.
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