[Information and Computation](http://dx.doi.org/10.1016/j.ic.2017.04.007) ••• (••••) •••

Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Information and Computation

YINCO:4273

www.elsevier.com/locate/yinco

On the limits of depth reduction at depth 3 over small finite fields

Suryajith Chillara [∗]*,*1, Partha Mukhopadhyay

Chennai Mathematical Institute, Siruseri, India

1. Introduction

In a recent breakthrough, Gupta et al. [\[1\]](#page--1-0) have proved that over Q, if an *nO(*1*)* -variate polynomial of degree *d* is computable by an arithmetic circuit of size *s*, then it can also be computed by a depth three $\Sigma\Pi\Sigma$ circuit of size $2^{0(\sqrt{d}\log d\log n \log s)}$ ³ Using this result, they prove the existence of a $\Sigma\Pi\Sigma$ circuit of size $2^{0(\sqrt{d}\log d\log n \log s)}$ computing the determinant polynomial of an $n \times n$ matrix (over \mathbb{Q}). Before this result, no depth 3 circuit for Determinant of size smaller than $2^{O(n \log n)}$ was known (over any field of characteristic $\neq 2$).

* Corresponding author.

<http://dx.doi.org/10.1016/j.ic.2017.04.007> 0890-5401/© 2017 Elsevier Inc. All rights reserved.

Please cite this article in press as: S. Chillara, P. Mukhopadhyay, On the limits of depth reduction at depth 3 over small finite fields, Inf. Comput. (2017), http://dx.doi.org/10.1016/j.ic.2017.04.007

E-mail addresses: suryajith@cmi.ac.in (S. Chillara), partham@cmi.ac.in (P. Mukhopadhyay).

¹ Supported by TCS research fellowship.
² In a pice follow-up work. Twen as has

² In a nice follow-up work, Tavenas has improved the upper bound to 2*O(* [√]*ⁿ* log *ⁿ)*. The main ingredient in his proof is an improved depth ⁴ reduction.

³ Gupta et al. [\[1\],](#page--1-0) using the depth reduction of Koiran [\[2\],](#page--1-0) show that if a polynomial is computed by an algebraic branching program of size *s*, then it can also be computed by a depth three circuit of size $2^{O(\sqrt{d}\log n\log s)}$. The determinant polynomial of a $n \times n$ matrix has an algebraic branching program of size poly*(n)*.

2 *S. Chillara, P. Mukhopadhyay / Information and Computation* ••• *(*••••*)* •••*–*•••

The situation is very different over *fixed-size finite fields*. Grigoriev and Karpinski proved that over fixed-size finite fields, any depth 3 circuit for the determinant polynomial of a $n \times n$ matrix must be of size $2^{\Omega(n)}$ [\[3\].](#page--1-0) Although Grigoriev and Karpinski proved the lower bound result only for the determinant polynomial, it is a folklore result that some modification of their argument can show a similar depth 3 circuit size lower bound for the permanent polynomial as well.⁴ Over any field, Ryser's formula for Permanent gives a $\Sigma\Pi\Sigma$ circuit of size 2⁰⁽ⁿ⁾ [\[5\]](#page--1-0) (for an exposition of this result, see [\[6\]\)](#page--1-0). Thus, for the permanent polynomial the depth 3 complexity (over fixed-size finite fields) is essentially $2^{\Theta(n)}$.

The result of [\[1\]](#page--1-0) is obtained through an ingenious depth reduction technique but their technique is tailored to the fields of zero characteristic. In particular, the main technical ingredients of their proof are the well-known monomial formula of Fischer [\[7\]](#page--1-0) and the duality trick of Saxena [\[8\].](#page--1-0) These techniques do not work over finite fields. Looking at the contrasting situation over Q and the fixed-size finite fields, a natural question is to ask whether one can find a new depth reduction technique over fixed-size finite fields such that any *nO(*1*)* -variate and degree *n* polynomial in **VP** can also be computed by a $\sum \prod \sum$ circuit of size $2^{o(n \log n)}$.

Question 1. Over any fixed-size finite field \mathbb{F}_q , is it possible to compute any n⁰⁽¹⁾-variate and n-degree polynomial in **VP** by a $\Sigma\Pi\Sigma$ *circuit of size* 2*o(ⁿ* ln *ⁿ) ?*

Note that any $n^{O(1)}$ -variate and *n*-degree polynomial can be trivially computed by a $\Sigma \Pi \Sigma$ circuit of size $2^{O(n \log n)}$ by writing it explicitly as a sum of all $n^{O(n)}$ possible monomials.

We give a negative answer to the aforementioned question by showing that over fixed-size finite fields, any $\Sigma\Pi\Sigma$ circuit computing the iterated matrix multiplication polynomial (which is in VP for any field) must be of size $2^{\Omega(n \log n)}$ (see Subsection [2.3,](#page--1-0) for the definition of the polynomial). More precisely, we prove that any $\Sigma\Pi\Sigma$ circuit computing the iterated matrix multiplication polynomial of *n* generic $n \times n$ matrices (denoted by IMM_{n,n}(X)), must be of size 2^{$\Omega(n \log n)$}.

Previously, Nisan and Wigderson [\[9\]](#page--1-0) proved a size lower bound of Ω(n^{d−1}/d!) for any homogeneous ΣΠΣ circuit computing the iterated matrix multiplication polynomial over *d* generic $n \times n$ matrices. Kumar et al. [\[10\]](#page--1-0) improved the bound to Ω($n^{d-1}/2^d$). These results work over any field. Over fields of zero characteristic, Shpilka and Wigderson proved a near quadratic lower bound for the size of depth 3 circuits computing the trace of the iterated matrix multiplication polynomial [\[11\].](#page--1-0)

Recently Tavenas [\[12\],](#page--1-0) by improving upon the previous works of Agrawal and Vinay [\[13\],](#page--1-0) and Koiran [\[2\]](#page--1-0) proved that any Recently Taventas [12], by improving upon the previous works of Agrawat and Vinay [15], and Kortan [2] proved that any
 $n^{O(1)}$ -variate, n-degree polynomial in **VP** has a depth four $\Sigma\Pi^{[O(\sqrt{n})]}\Sigma\Pi^{[\sqrt{n}]}$ circuit of siz et al. [\[14\]](#page--1-0) proved a size lower bound of $2^{\Omega(\sqrt{n}\log n)}$ for a polynomial in **VNP** which is constructed from the combinatorial design of Nisan and Wigderson [\[15\].](#page--1-0) In a beautiful follow up result, Fournier et al. [\[16\]](#page--1-0) proved that a similar lower bound of $2^{\Omega(\sqrt{n}\log n)}$ is also attainable by the iterated matrix multiplication polynomial (see [\[17\],](#page--1-0) for a unified analysis of the depth 4 lower bounds of [\[14\]](#page--1-0) and [\[16\]\)](#page--1-0). The main technique used was *the method of shifted partial derivatives* which was used to prove $2^{\Omega(\sqrt{n})}$ size lower bound for $\Sigma\Pi^{[O(\sqrt{n})]}\Sigma\Pi^{[\sqrt{n}]}$ circuits computing Determinant or Permanent polynomial [\[18\].](#page--1-0) Recent work of Kumar and Saraf [\[19\]](#page--1-0) shows that the depth reduction as shown by Tavenas [\[12\]](#page--1-0) is optimal even for the homogeneous formulas. This strengthens the result of $[16]$ who proved the optimality of depth reduction for the circuits. Very recently, a series of papers show strong depth 4 lower bounds even for homogeneous depth 4 formulas with no bottom fan-in restriction [\[20–22\].](#page--1-0)

Similar to the situation at depth 4, we also give an example of an explicit n^2 -variate and *n*-degree polynomial in **VNP** (which is not known to be in **VP**) such that over fixed-size finite fields, any depth three $\Sigma\Pi\Sigma$ circuit computing it must be of size $2^{\Omega(n \log n)}$. This polynomial family, denoted by $NW_{n,\epsilon}(X)$ (see Subsection [2.2,](#page--1-0) for the definition of the polynomial) is closely related to the polynomial family introduced by Kayal et al. [\[14\].](#page--1-0) In fact, from our proof idea it will be clear that the strong depth 3 size lower bound results that we show for $NW_{n,\epsilon}(X)$ and $IMM_{n,n}(X)$ polynomials are not really influenced by the fact that the polynomials are either in **VNP** or **VP**. Rather, the bounds are determined by a combinatorial property of the subspaces generated by a set of carefully chosen derivatives.

Our main theorem is the following.

Theorem 2. Over any fixed-size finite field \mathbb{F}_q , any depth three $\Sigma\Pi\Sigma$ circuit computing the polynomials NW $_{n,\epsilon}$ (X) or IMM $_{n,n}$ (X) must be of size at least $2^{\delta n \log n}$, where the parameters δ and ϵ (< 1/2) are in (0, 1) and depend only on q.

In section [6,](#page--1-0) we set the parameter δ to $\frac{1}{20q \log q}$ and it follows from the subsequent calculations that $\epsilon < \delta + 0.1$. As an important consequence of the above theorem, we have the following corollary.

Corollary 3. Over any fixed-size finite field \mathbb{F}_q , there is no depth reduction technique that can be used to compute all the n⁰⁽¹⁾-variate *and n-degree polynomials in* **VP** *by depth 3 circuits of size* 2*o(ⁿ* log *ⁿ) .*

⁴ Saptharishi gives a nice exposition of this result in his survey and he attributes it to Koutis and Srinivasan [\[4\].](#page--1-0)

Please cite this article in press as: S. Chillara, P. Mukhopadhyay, On the limits of depth reduction at depth 3 over small finite fields, Inf. Comput. (2017), http://dx.doi.org/10.1016/j.ic.2017.04.007

Download English Version:

<https://daneshyari.com/en/article/4950574>

Download Persian Version:

<https://daneshyari.com/article/4950574>

[Daneshyari.com](https://daneshyari.com)