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It is shown that one-way deterministic reversal-bounded multicounter languages are closed 
under right quotient with languages from many language families; even those defined by 
nondeterministic machines such as the context-free languages. Also, it is shown that when 
starting with one-way deterministic machines with one counter that makes only one rever-
sal, taking the left quotient with languages from many different language families — again 
including those defined by nondeterministic machines such as the context-free languages 
— yields only one-way deterministic reversal-bounded multicounter languages. These re-
sults are surprising given the nondeterministic nature of the deletion. However, if there 
are two more reversals on the counter, or a second 1-reversal-bounded counter, taking 
the left quotient (or even just the suffix operation) yields languages that can neither be 
accepted by deterministic reversal-bounded multi-counter machines, nor by 2-way deter-
ministic machines with one reversal-bounded counter.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

This paper involves the study of various types of deletion operations applied to languages accepted by deterministic 
classes of machines. Deletion operations, such as left and right quotients, and word operations such as prefix, suffix, infix, 
and outfix, are more commonly studied applied to languages accepted by classes of nondeterministic machines. Indeed, 
many language families accepted by nondeterministic acceptors form full trios (closure under homomorphism, inverse ho-
momorphism, and intersection with regular languages), and every full trio is closed under left and right quotient with 
regular languages, prefix, suffix, infix, and outfix [2]. For families of languages accepted by deterministic machines however, 
the situation is more tricky due to the nondeterministic behaviour of the deletion. Indeed, deterministic pushdown automata 
are not even closed under left quotient with a set of individual letters. Here, most deterministic machine models studied 
will involve restrictions of one-way deterministic reversal-bounded multicounter machines (DCM). These are machines that 
operate like deterministic finite automata with an additional fixed number of counters, where there is a bound on the 
number of times each counter switches between increasing and decreasing [3,4]. The family DCM(k, l) consists of languages 
accepted by machines with k counters that are l-reversal-bounded. DCM languages have many decidable properties, such 

✩ This is an extended version of the conference paper [1].
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as emptiness, infiniteness, equivalence, inclusion, universe, and disjointness [4]. Furthermore, DCM(1, l) forms an important 
restriction of deterministic pushdown automata.

These machines have been studied in a variety of different applications, such as to membrane computing [5], verification 
of infinite-state systems [6–9], and Diophantine equations [9].

Recently, in [10], a related study was conducted for insertion operations; specifically operations defined by ideals ob-
tained from the prefix, suffix, infix, and outfix relations, as well as left and right concatenation with languages from different 
language families. It was found that languages accepted by one-way deterministic reversal-bounded counter machines with 
one reversal-bounded counter are closed under right concatenation with �∗ , but having two 1-reversal-bounded counters 
and right concatenating �∗ yields languages outside of both DCM and 2DCM(1) (languages accepted by two-way determin-
istic machines with one counter that is reversal-bounded). It also follows from this analysis that the right input end-marker 
is necessary for even one-way deterministic reversal-bounded counter machines, when there are at least two counters. Fur-
thermore, concatenating �∗ to the left of some one-way deterministic 1-reversal-bounded one counter languages yields 
languages that are neither in DCM nor 2DCM(1). Other recent results on reversal-bounded multicounter languages include 
a technique to show languages are outside of DCM [11]. Closure properties of nondeterministic counter machines under 
other types of deletion operations were studied in [12].

In this paper we investigate closure properties of types of deterministic machines. In Section 2, preliminary background 
and notation are introduced. In Section 3, erasing operations where DCM is closed are studied. It is shown that DCM is 
closed under right quotient with context-free languages, and that the left quotient of DCM(1, 1) by a context-free language 
is in DCM. Both results are generalizable to quotients with a variety of different families of languages containing only 
semilinear languages. In Section 4, non-closure of DCM under erasing operations are studied. It is shown that the set of 
suffixes, infixes, or outfixes of a DCM(1, 3) or DCM(2, 1) language can be outside of both DCM and 2DCM(1). In Section 5, 
DPCMs (deterministic pushdown automata augmented by reversal-bounded counters), and NPCMs (the nondeterministic 
variant) are studied. It is shown that DPCM is not closed under prefix or suffix, and the right or left quotient of the 
language accepted by a 1-reversal-bounded deterministic pushdown automaton by a DCM(1, 1) language can be outside 
DPCM. In Section 6, the effective closure of regular languages with other families is briefly discussed, and in Section 7, 
bounded languages are discussed.

2. Preliminaries

The set of non-negative integers is denoted by N0, and the set of positive integers by N. For c ∈ N0, let π(c) be 0 if 
c = 0, and 1 otherwise.

We assume knowledge of standard formal language theoretic concepts such as finite automata, determinism, nondeter-
minism, semilinearity, recursive, and recursively enumerable languages [3,13]. Next, we will give some notation used in the 
paper. The empty word is denoted by λ. If � is a finite alphabet, then �∗ is the set of all words over � and �+ = �∗ \ {λ}. 
For a word w ∈ �∗ , if w = a1 · · ·an where ai ∈ �, 1 ≤ i ≤ n, the length of w is denoted by |w| = n, and the reversal of w
is denoted by w R = an · · ·a1, which is extended to reversals of languages in the natural way. In addition, if a ∈ �, |w|a is 
the number of a’s in w . A language over � is any subset of �∗ . Given a language L ⊆ �∗ , the complement of L, �∗ \ L
is denoted by L. Given two languages L1, L2, the left quotient of L2 by L1, L−1

1 L2 = {y | xy ∈ L2, x ∈ L1}, and the right 
quotient of L1 by L2 is L1L−1

2 = {x | xy ∈ L1, y ∈ L2}. A full trio is a language family closed under homomorphism, inverse 
homomorphism, and intersection with regular languages [13].

Let n ∈ N. Then Q ⊆ N
n
0 is a linear set if there is a vector �c ∈ N

n
0 (the constant vector), and a set of vectors V =

{ �v1, . . . , �vr}, r ≥ 0, each �vi ∈ N
n
0 such that Q = {c + t1 �v1 + · · · + tr �vr | t1, . . . , tr ∈ N0}. A finite union of linear sets is called a 

semilinear set.
A language L is word-bounded or simply bounded if L ⊆ w∗

1 · · · w∗
k for some k ≥ 1 and (not-necessarily distinct) 

words w1, . . . , wk . Further, L is letter-bounded if each wi is a letter. Also, L is bounded-semilinear if L ⊆ w∗
1 · · · w∗

k and 
Q = {(i1, . . . , ik) | wi1

1 · · · wik
k ∈ L} is a semilinear set [14].

We now present notation for common word and language operations used throughout the paper.

Definition 1. For a language L ⊆ �∗ , the prefix, suffix, infix, and outfix operations are defined by:

• pref(L) = {w | wx ∈ L, x ∈ �∗},
• suff(L) = {w | xw ∈ L, x ∈ �∗},
• inf(L) = {w | xwy ∈ L, x, y ∈ �∗},
• outf(L) = {xy | xwy ∈ L, w ∈ �∗}.

Note that pref(L) = L(�∗)−1 and suff(L) = (�∗)−1L.
The outfix operation has been generalized to the notion of embedding [15]:

Definition 2. The m-embedding of a language L ⊆ �∗ is the following set: emb(L, m) = {w0 · · · wm | w0x1 · · · wm−1xm wm ∈ L,

wi ∈ �∗, 0 ≤ i ≤ m, x j ∈ �∗, 1 ≤ j ≤ m}.
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