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We present a family of binary classifiers and analyse their performance. Each classifier is 
determined by a set of ‘prototypes’, with given labels. The classification of a given point is 
determined through the sign of a discriminant function. For each prototype, its sphere of 
influence is the largest sphere centred on it that contains no prototypes of opposite label, 
and, given a point to be classified, there is a contribution to the discriminant function 
at that point from precisely those prototypes whose spheres of influence contain the 
point. This contribution is positive from positive prototypes and negative from negative 
prototypes. These contributions are larger in absolute value the closer the point is (relative 
to the sphere’s radius) to the prototype. We quantify the generalization error of such 
classifiers in a standard probabilistic learning model which involves the values of the 
discriminant function on the points of a random training sample.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Learning Vector Quantization (LVQ) and its various extensions introduced by Kohonen [14] are used successfully in many 
machine learning tools and applications. Learning pattern classification by LVQ is based on adapting a fixed set of labeled 
prototypes in Euclidean space and using the resulting set of prototypes in a nearest-prototype rule (winner-take-all) to 
classify any point in the input space. LVQ fails if the Euclidean representation is not well-suited for the data. To that end, 
several extensions of the LVQ algorithm exist which use a weighted Euclidean metric [11] that take advantage of samples 
for which a more confident (or a large margin) classification can be obtained. Generalization error bounds with dependence 
on this sample margin are stated in [11,18] and, as is usually the case for large-margin learning [1], the bounds are tighter 
than ones with no sample-margin dependence. The results of such work are important as they explain why LVQ works well 
in practice in Euclidean metric spaces.

In the world of big data, which deals with a rich variety of learning domains, there is a huge potential in doing prototype-
based learning over non-Euclidean spaces. In this paper we present a family of binary classifiers for learning on any metric 
input space. We analyse their performance and present generalization learning error bounds that are sample-dependent 
and hence take advantage of samples that can be classified with a large margin. Each classifier is determined by a set 
of ‘prototypes’, whose classifications are given; and the classification of any other point depends on the classifications of 
the prototypes to which it is sufficiently close, and on how close it is to these prototypes. Thus, in contrast to the above-
mentioned works, here a classifier’s decision is not based only on the nearest prototype. In many domains of application, 
data can no longer simply be considered to be in Euclidean space. As has been pointed out in [12], data can take diverse 
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forms in areas such as linguistics and bioinformatics. For this reason, an approach that analyses data in a general metric 
space (such as that taken here) might be more useful.

More precisely, the classification of a given point is determined through the sign of a discriminant function. For each 
prototype, its sphere of influence is defined to be the largest sphere centred on it that contains no prototypes of opposite 
label. Given a point to be classified, there is a contribution to the discriminant function at that point from precisely those 
prototypes whose spheres of influence contain the point, this contribution being positive from positive prototypes and 
negative from negative prototypes. These contributions are larger in absolute value the closer the point is (relative to the 
sphere’s radius) to the prototype. We quantify the generalization error of such classifiers in a standard probabilistic learning 
model, and we do so in a way that involves the values of the discriminant function on the points of the random training 
sample.

We note in passing that the idea of a sphere of influence is not new. In fact, RCE networks [15] have a hidden layer 
of activation units associated with a spherical decision region in the input space. There are some differences between our 
classifier and the RCE. RCE is essentially a classifier whose decision regions are union of spheres, which may not cover all of 
the input space and hence the classifier can in some cases reject making a decision. The radii of the spheres are parameters 
to be learnt. Learning RCE involves adapting the size of the radii in an incremental manner in response to whether sample 
instances are included or not in spheres that are associated with a mismatching class label. New spherical units, that is, 
prototypes, can also be added when sample points are not covered and not classified. In contrast to RCE, our classifier is 
non-parametric and the region of influence of each prototype, in resemblance to Voronoi cells in the nearest-neighbour
classifier [7], is determined directly from the sample without any parameter such as a radius. The classifier’s definition is 
intentionally left very general in that the set of prototypes can be any set of k points, in particular a subset of the sample, 
and can be determined via any algorithm. The error bounds that we state in the paper apply regardless of the algorithm 
that is used to learn these prototypes.

2. Classifiers based on spheres of influence

The classifiers we consider are binary classifiers defined on a metric space X ; so, they are functions h : X → {−1, 1}. We 
shall assume that X is of finite diameter with respect to the metric d and, for the sake of simplicity, that its diameter is 1. 
(The analysis can easily be modified for any other value of the diameter.) Each classifier we consider is defined by a set of 
labeled prototypes. More precisely, a typical classifier is defined by a finite set �+ of positive prototypes and a disjoint set �−
of negative prototypes, with �+ and �− both being subsets of X . The idea is that the correct classifications of the points 
in �+ (�− , respectively) are +1 (−1). We define the sphere of influence of each prototype as follows. Suppose p ∈ �+ and 
let

r(p) = min{d(p, p−) : p− ∈ �−},
the distance to the closest oppositely-labeled prototype; and define r(p) analogously in the case where p ∈ �− . Then 
the open ball Br(p)(p) = Br(p)(p; d), of radius r(p) and centred on p, is the sphere of influence of p. Suppose that � =
�+ ∪ �− = {p1, p2, . . . , pk}, where �+ = {p1, . . . , pt} and �− = {pt+1, . . . , pk}, and let ri denote r(pi) where 0 < r(pi) ≤ 1. 
For x ∈X , let

φi(x) = 1 − d(x, pi)

ri

and let

si(x) = [φi(x)]+ ,

where, for z ∈ R, [z]+ = z if z ≥ 0 and [z]+ = 0 otherwise. Define the ‘discriminant’ function f� :X → R as follows:

f�(x) =
t∑

i=1

si(x) −
k∑

i=t+1

si(x). (1)

The corresponding binary classifier defined by � (and its labels) is h�(x) = sgn( f�(x)) where sgn(z) = 1 if z ≥ 0 and 
sgn(z) = −1 if z < 0. (Note that | f�(x)| ≤ k for all x.) We denote the class of all such f� by F and we denote by H the 
corresponding set of classifiers h� . In the context of learning, (1) defines the margin of h� at x.

To explain the idea behind this classifier, consider the contribution that a prototype p makes to the value f�(x) of the 
discriminant function at x and suppose, without loss of generality, that p is a positive prototype. This prototype makes no 
contribution at all if x lies outside the sphere of influence of p. The rationale for this is simply that, in this case, there must 
be at least one negative prototype p− whose distance from p is no more than the distance from x to p; and so there seems 
to be little justification for assuming x is close enough to p to derive some influence from the classification of p. If x does 
lie inside the sphere of influence of p, then there is a positive contribution to f�(x) that is between 0 and 1 and is larger in 
absolute value the closer x is to p. The rationale here is that if x is deeply embedded in the sphere of influence of p (rather 
than being more on its periphery), and if we were considering how we should classify the point by taking into account 
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