
JID:YINCO AID:4243 /FLA [m3G; v1.194; Prn:19/12/2016; 15:33] P.1 (1-16)

Information and Computation ••• (••••) •••–•••

Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Constructing self-stabilizing oscillators in population protocols

Colin Cooper a, Anissa Lamani b,∗, Giovanni Viglietta c, Masafumi Yamashita b, 
Yukiko Yamauchi b

a Department of Informatics, King’s College, United Kingdom
b Department of Informatics, Graduate School of ISEE, Kyushu University, Japan
c School of Electrical Engineering and Computer Science, University of Ottawa, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 October 2015
Available online xxxx

Keywords:
Autonomous systems
Leader election
Population protocols
Self-organization
Self-oscillation
Self-stabilization

We consider the population protocol (PP) model used to represent a collection of finite-
state mobile agents that interact with each other to accomplish a common task. Motivated 
by the well-known BZ reaction, we address the problem of autonomously generating an 
oscillatory execution from any initial configuration (i.e., in a self-stabilizing manner). For 
deterministic PPs under a deterministic scheduler, we show that the self-stabilizing leader 
election (SS-LE) problem and the self-stabilizing oscillation (SS-OS) problem are equivalent, 
in the sense that an SS-OS protocol is constructible from a given SS-LE protocol, and vice 
versa, which unfortunately implies that (1) resorting to a leader is inevitable (although we 
seek a decentralized solution), (2) n states are necessary to create oscillations of amplitude 
n, where n is the number of agents (although we seek a memory-efficient solution). Aiming 
at reducing the space complexity, we present some deterministic oscillatory PPs under a 
uniform random scheduler.

© 2016 Published by Elsevier Inc.

1. Introduction

We focus in this paper on self-oscillations which play fundamental roles in autonomous biological reactions, and in-
vestigate them as a phenomenon in distributed computing. Self-oscillations are often understood as a chemical oscillator 
provided by certain reactions, such as the Belousov–Zhabotinsky reaction. We use in our investigation the population pro-
tocol model.

The population protocol (PP) model introduced by Angluin et al. [1] is a model of passive agent systems. It is used as 
a theoretical model of a collection of finite-state mobile agents that interact with each other in order to solve a given 
problem in a cooperative fashion. In PPs, computations are done through pairwise interactions: When two agents interact, 
they exchange their information and update their respective states according to some common protocol. The interaction 
pattern is assumed to be unpredictable, that is, each agent has no control over which agent it interacts with. We thus 
assume the presence of an abstract mechanism called scheduler that chooses, at any time instant, a pair of agents for an 
interaction. The PP model can represent not only artificial distributed systems such as sensor networks and mobile agent 
systems, but also natural distributed systems such as animal populations and chemical reaction networks.

* Corresponding author.
E-mail address: anissa.lamani@gmail.com (A. Lamani).

http://dx.doi.org/10.1016/j.ic.2016.12.002
0890-5401/© 2016 Published by Elsevier Inc.

http://dx.doi.org/10.1016/j.ic.2016.12.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:anissa.lamani@gmail.com
http://dx.doi.org/10.1016/j.ic.2016.12.002


JID:YINCO AID:4243 /FLA [m3G; v1.194; Prn:19/12/2016; 15:33] P.2 (1-16)

2 C. Cooper et al. / Information and Computation ••• (••••) •••–•••

In the past decade, many problems have been investigated on PPs, including the problems of computing a function [2,
1,3–5], electing a leader [6–9], counting [10–12], coloring [4] and synchronizing [13]. Most of these problems consider the 
computational power of the population and hence are static; the agents are requested to eventually reach a configuration 
that represents the answer to the considered computation problem. The notion of termination is typically intended in the 
Noetherian sense (in the context of abstract rewriting systems); agents are not requested to eventually terminate, however, 
the execution is requested to repeat the target configuration that contains the answer of the problem that is considered, 
forever.

Unlike most of the past works in PPs, we throw light on an aspect of PPs as a model of chemical reactions. Specifically, 
we investigate a dynamic problem that consists of designing a PP that stabilizes to an oscillatory execution, no matter 
from which initial configuration it starts; that is, we explore a self-stabilizing PP that generates an oscillatory execution. The 
problem emerges in the project of designing molecular robots [14], and is directly motivated by the well-known Belousov–
Zhabotinsky reaction, which is an example of non-equilibrium thermodynamics providing a non-linear chemical oscillator. 
In biological systems, the oscillatory behavior is used as a natural clock to transmit signals and hence transfer information. 
In artificial distributed systems, aside from their theoretical interest, PPs that exhibit an oscillatory behavior could be used 
to distributely and autonomously implement a clock.

This paper shows that under a deterministic scheduler governed by an adversary, the self-stabilizing leader election 
(SS-LE) problem and the self-stabilizing oscillation (SS-OS) problem are equivalent, in the sense that an SS-OS protocol is 
constructible from a given SS-LE protocol, and vice versa, and hence costly in terms of the space complexity. Specifically, we 
show the following: Let n be the size of the population. Cai et al. presented an SS-LE protocol PLE whose space complexity 
(per agent) is exactly �logn� bits and showed that it is optimal; there is no SS-LE protocol whose space complexity is less 
than �log n� [6]. We first construct an SS-OS protocol PO S from PLE by using 2 more bits (per agent). Since any SS-LE 
protocol P ′

LE requires at least �log n� bits and can be transformed into PLE , we can easily construct PO S from P ′
LE via PLE . 

We next show that an SS-LE protocol is constructible from any SS-OS protocol, again by using 2 more bits, which implies 
that the space complexity of any SS-OS protocol is at least �log n� − 2 bits.

Although the space complexity of PO S is �log n� +2 bits, it requires 4n −2 states. Aiming at the reduction of the number 
of states, under a uniform random scheduler, by modifying PO S , we propose three SS-OS protocols PO I (I = 1, 2, 3) which 
respectively require 2(n + √

n), 2(n + logn) and 2(n + 2) states. For PO1 and PO3, the space complexity is reduced at the 
expense of either a lower average amplitude or a longer average period.

Apart from the difference of motivation, few works on dynamic problems are related to our work. Angluin et al. [4] pro-
vided a self-stabilizing token circulation protocol in a ring with a pre-selected leader. Beauquier and Burman investigated the 
self-stabilizing mutual exclusion problem, the self-stabilizing group mutual exclusion problem [15] and the self-stabilizing 
synchronization problem [13]. In the latter work [13], the authors have shown that the self-stabilizing synchronization prob-
lem in the PP model under a deterministic scheduler is impossible to solve without any additional assumptions and have 
hence proposed a solution, assuming the presence of an unlimited-resource agent called Base Station. Both the token circu-
lation protocol proposed in [4] and the phase clock protocol presented in [13] can be used to implement a self-stabilizing 
oscillatory behavior. However, the first one works only for ring shaped interacting graphs, while the second one uses the 
notion of cover time (the minimum number of interactions for an agent to have met with each other agent with certainty) 
and assumes an unlimited resource agent.

Roadmap. After introducing some concepts and notions in Section 2, we consider PPs under a deterministic scheduler 
governed by an adversary in Section 3. Under this scheduler, we show that the SS-LE problem and the SS-OS problem are 
equivalent; that is, an SS-OS protocol is constructible from a given SS-LE protocol, and vice versa. In Section 4, we consider 
PPs under a uniform random scheduler, i.e., the interacting agents are chosen uniformly at random. Under a uniform random 
scheduler, we present and analyze some oscillatory PPs, mainly aiming to reduce the space complexity. Section 5 is devoted 
to the conclusion and open problems.

2. Preliminaries

In this paper, we consider a population of n anonymous finite-state agents that update their states by interacting with 
other agents. The set of n agents in the population is denoted by A = {0, 1, . . . , n − 1}. We consider only pairwise inter-
actions; each interaction involves exactly two agents, and they update their states according to a common protocol when 
they interact. Identities i ∈ A are used for notation purposes only. The agents have no identity and cannot be distinguished 
from each other. In addition, all agents execute the same protocol. Any pair of agents i and j (i �= j) in the population are 
susceptible to interact.

A protocol P = (Q , δ) is a pair of a finite set of states Q and a transition function δ : Q × Q → Q × Q . When two 
agents interact with each other, δ determines the next states of both agents. Let p and q be the states of agents i and j, 
respectively. δ(p, q) = (p′, q′) indicates that the states of agents i and j, after interacting with each other, are p′ and q′ , 
respectively. We distinguish the initiator and the responder in δ, so that δ(p, q) = (p′, q′) may not imply δ(q, p) = (q′, p′).

A configuration C is a mapping from A to Q that specifies the states of all the agents in the population. By C(i) and C , 
we refer to the state of a given agent i in a configuration C and the set of all possible configurations of the population, 
respectively. Given a configuration C ∈ C and an interaction r = (i, j) between two agents i and j, we say that C ′ yields 



Download English Version:

https://daneshyari.com/en/article/4950602

Download Persian Version:

https://daneshyari.com/article/4950602

Daneshyari.com

https://daneshyari.com/en/article/4950602
https://daneshyari.com/article/4950602
https://daneshyari.com

