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a  b  s  t  r  a  c  t

For  many-objective  optimization  problems,  how  to  get a set  of  solutions  with  good  convergence  and
diversity  is  a difficult  and  challenging  work.  In  this  paper,  a new  decomposition  based  evolutionary  algo-
rithm  with uniform  designs  is proposed  to achieve  the  goal.  The  proposed  algorithm  adopts  the uniform
design  method  to  set the weight  vectors  which  are  uniformly  distributed  over  the  design  space,  and  the
size  of the  weight  vectors  neither  increases  nonlinearly  with  the number  of  objectives  nor  considers  a for-
mulaic  setting.  A crossover  operator  based  on the  uniform  design  method  is constructed  to  enhance  the
search  capacity  of  the  proposed  algorithm.  Moreover,  in  order  to improve  the convergence  performance
of  the  algorithm,  a  sub-population  strategy  is  used  to  optimize  each  sub-problem.  Comparing  with  some
efficient  state-of-the-art  algorithms,  e.g., NSGAII-CE,  MOEA/D  and  HypE,  on  six benchmark  functions,  the
proposed  algorithm  is able  to find  a set of solutions  with  better  diversity  and  convergence.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Multi-objective evolutionary algorithms (MOEAs) are a kind
of effective method for solving multi-objective problems because
they can handle a set of solutions in parallel. In the last twenty
years, there are many well-known MOEAs [1–5] that are proposed,
most of these MOEAs are based on Pareto dominance. Such Pareto
dominance-based algorithms usually deal well with two  or three
objectives problems but their searching and selecting ability are
often severely degraded with the increased number of objectives
[6,50,51]. This is explained by the fact that, as the number of
objectives increases, the proportion of non-dominated elements
in the population grows, being increasingly difficult to discrimi-
nate among solutions using only the dominance relation [51]; if
the number of solutions is constant, the size of non-dominance
area of solutions will increase with the increase of the number
of objectives, these will make the Pareto dominance-based fit-
ness evaluation generate very weak selection pressure toward the
Pareto front (PF). Therefore, how to enhance the selection pressure
toward the PF and maintain the diversity of obtained solutions are
critical for the many-objective optimization algorithms.
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Currently, the methods for dealing with many-objective prob-
lems can be divided into three categories. The first category uses
an indicator function, such as the hypervolume [7–9], as the fit-
ness function. This kind of algorithm is also referred to as IBEAs
(indicator-based evolutionary algorithms), and their high search
ability has been shown in the literature [10]. Recently, Bader and
Zitzler [11] proposed a fast hypervolume-based many-objective
optimization algorithm (HypE) which uses Monte Carlo simulation
to quickly approximate the exact hypervolume values. However,
one of their main drawbacks is the computation time for the hyper-
volume calculation which exponentially increases with the number
of objectives [43], and even if the hypervolume values are calcu-
lated by Monte Carlo approximations, its running time is more
than 10 h after 50,000 objective function evaluations for seven-
objective problems [44]. This limits the application of hypervolume
indicator-based evolutionary algorithms to many-objective opti-
mization problems.

The second category takes advantages of solution ranking meth-
ods. Specifically, solution ranking methods are used to discriminate
among solutions in order to enhance the selection pressure toward
the PF, which makes sure the solutions are able to converge to
the PF. At present, numerous approaches have been proposed to
rank solutions for many-objective problems. Bentley and Wake-
field [12] proposed ranking composition methods which extract
the separated fitness of every solution into a list of fitness values for
each objective. Kokolo and Hajime [13] proposed a relaxed form of
dominance (RFD) to deal with what they called dominant resistant
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solutions, i.e., solutions that are extremely inferior to others in at
least one objective. Farina and Amato [14] proposed a dominance
relation which takes into consideration the number of objectives
where a solution is better, equal and worse than another solution.
Sato et al. [15] proposed a method to strength or weaken the selec-
tion process by expanding or contracting the solutions’ dominance
area (CE).

The third category utilizes the scalarizing functions to deal with
the many-objective problems. According to the literatures [16–18],
scalarizing function-based algorithms could deal better with many-
objective problems than Pareto dominance-based algorithms. The
main advantage of scalarizing function-based algorithms is that
their fitness evaluation can be easily calculated. The represen-
tative MOEA in this category is MOEA/D [19] (multi-objective
evolutionary algorithm based on decomposition), which makes
use of traditional aggregation methods to convert a MOP  into a
number of single objective optimization sub-problems, and simul-
taneously optimizes each sub-problem in one single run. Each
sub-problem is optimized by using information from its several
neighboring sub-problems, which makes MOEA/D have a good per-
formance. MOEA/D works well on a wide range of multi-objective
problems with many objectives, discrete decision variables and
complicated Pareto sets [20–22]. In MOEA/D, weight vectors play
a very important role, they directly determine the distribution of
obtained solutions and affect the convergence of obtained solu-
tions. In MOEA/D [19], the uniformity of the used weighted vectors
determines the uniformity of the obtained non-dominated opti-
mal  solutions; however, the used weighted vectors in MOEA/D are
not very uniform and the size N of these weighted vectors should
satisfy the restriction N = Cm

H+m−1 (where m is the number of objec-
tives and H is an integer). Thus N cannot be freely assigned and it
will increase nonlinearly with the increase of m, which restricts the
application of MOEA/D to a certain extent in many-objective opti-
mization problems. Therefore, for many-objective problems, how
to set weight vectors is a very difficult but critical task, and it is nec-
essary to consider an efficient and simple method to product the
weight vectors [19,23]. Hughes [24] also considers a similar idea to
set the weight vectors.

Uniform design (UD) which is proposed by Fang and Wang [25]
represents a combination of number theory and numerical analy-
sis. The UD method has been successfully implemented in science,
engineering and industries [26–31]. The literature [32] has shown
that the uniform design performs better at estimating nonlinear
problems than other designs. The foremost goal of the UD method is
to find a set of points that are uniformly distributed over the design
space, and the set has a small discrepancy. The UD method has been
used in MOEAs to generate the weight vectors, for example, Leung
and Wang [28] use the UD method to generate multiple weight vec-
tors which are uniformly scattered points on a unit hypercube and
each point on the unit hypercube yields a weight vector; the liter-
ature [22] uses the UD method to yield weight vectors and design
a uniform design multi-objective evolutionary algorithm based on
decomposition for many-objective optimization problems, but the
algorithm only tests five-objective problems.

Because the computation time for the discrepancy of a set of
weight vectors exponentially increases with the number of objec-
tives and the weight vectors, which restricts the application of the
UD to many-objective optimization problems. In this paper, we
use the inverted generational distance (IGD) [33] to approximate
the discrepancy, then we use the UD method to generate a set of
points which are uniformly distributed on a unit sphere, and the
points are the weight vectors. In addition, a sub-population strategy
is used to enhance the local search ability of the proposed algo-
rithm. We  make each sub-problem have a sub-population, and each
sub-problem uses the information provided by its corresponding
sub-population to improve the convergence performance. Then, a

selection strategy based on decomposition and the sub-population
strategy is designed to help crossover operators carry out the global
search and local search. Moreover, a crossover operator based on
the UD method is constructed to improve the search capacity. Based
on all these, a new decomposition based evolutionary algorithm
with uniform design, UDEA/D, is designed for many-objective opti-
mization problems. The experiments demonstrate that UDEA/D
can significantly outperform MOEA/D, NSGAII-CE (NSGAII based on
contracting or expanding the solutions’ dominance area) and HypE
on a set of test instances.

The rest of this paper is organized as follows: Section 2 intro-
duces the main concepts of the multi-objective optimization;
Section 3 describes two related uniform design methods; Section 4
presents a crossover operator based on a uniform design method;
Section 5 presents a new many-objective evolutionary algorithm;
while Section 6 shows the experiment results of the proposed
algorithm and the related analysis; finally, Section 7 draws the
conclusions and proposes the future work.

2. Multi-objective optimization

A multi-objective optimization problem can be formulated as
follows [34]:⎧⎪⎨
⎪⎩

min  F(x) = (f1(x), f2(x), . . .,  fm(x))

s.t. gi(x) ≤ 0, i = 1, 2, . . .,  e1

hj(x) − 0, j = 1, 2, . . .,  e2

(1)

where x = (x1, . . .,  xn) ∈ X ⊂ Rn is called decision variable and X is n-
dimensional decision space. fi(x)(i = 1, . . .,  m)  is the ith objective to
be minimized, gi(x)(i = 1, 2, . . .,  e1) defines ith inequality constraint
and hj(x)(j = 1, 2, . . .,  e2) defines jth equality constraint. Further-
more, all the constraints determine the set of feasible solutions
which are denoted by �. To be specific, we try to find a feasible solu-
tion x ∈ � minimizing each objective function fi(x)(i = 1, . . .,  m)  in F.
In the following, four important definitions [35] for multi-objective
problems are given.

Definition 1 (Pareto dominance). Pareto dominance between solu-
tions x,z ∈ � is defined as follow. If

∀i ∈ {1, 2, . . .,  m}fi(x) ≤ fi(x)

∧∃i ∈ {1, 2, . . .,  m}fi(x) < fi(z)
(2)

are satisfied, x dominates (Pareto dominate) z (denoted x 	 z).

Definition 2 (Pareto optimal). A solution vector x is said to be
Pareto optimal with respect to �,  if �  z ∈  ̋ : z 	 x.

Definition 3 (Pareto optimal set (PS)). The set of Pareto optimal
solutions (PS) is defined as:

PS = {x ∈ ˝|�  z ∈  ̋ : z 	 x} (3)

Definition 4 (Pareto optimal front). The Pareto optimal front (PF)
is defined as:

PF = {F(x)|x ∈ PS} (4)

3. Uniform design

In this section, two  uniform design methods are briefly
introduced. The main goal of a uniform design is to sample a small
set of points from a given closed and bounded set G ⊂ RM such that
the sampled points are uniformly scattered on G. In the following,
we consider only two  specific cases of G and describe the main
features of uniform design. For more details, we refer to [25].
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