
Information and Computation 253 (2017) 163–178

Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Alternating space is closed under complement 

and other simulations for sublogarithmic space ✩,✩✩

Viliam Geffert

Department of Computer Science, P. J. Šafárik University, Jesenná 5, 04154 Košice, Slovakia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 September 2016
Received in revised form 30 January 2017
Available online 21 February 2017

Keywords:
Computational complexity
Alternation
Sublogarithmic space

We present some new simulations for ASpace(s(n)), the class of languages accepted by 
alternating Turing machines with O (s(n)) space, with absolutely no assumptions on s(n). 
These simulations provide the following inclusions:
(a) ASpace(s(n)) ⊆ DTime(n · 2O (s(n))). This extends, to sublogarithmic space bounds, the 
classic result stating that ASpace(s(n)) ⊆ DTime(2O (s(n))), proved under the assumption 
s(n) ≥ log n.
(b) ASpace(s(n)) ⊆ NTimeSpace(n · 2O (s(n)), 2O (s(n))), a simulation by nondeterministic 
machines with simultaneous bounds on time and space. This improves the known 
inclusion, stating that ASpace(s(n)) ⊆ NSpace(2O (s(n))), proved under the assumption 
s(n) ≥ log logn.
(c) ASpace(s(n)) = co-ASpace(s(n)), i.e., the alternating space is closed under complement, 
independently of whether s(n) is above logn and of whether the original machine can 
get into an infinite loop. This solves a long-standing open problem. Quite surprisingly, this 
complementary simulation does not eliminate infinite loops—the new machine itself goes 
to infinite loops along some computation paths.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Space complexity of a computation, introduced in [16,17] in 1965, is the second in importance among various computa-
tional complexity measures, right after the time complexity. It turns out that log n is the most significant boundary among 
all space complexity bounds, since the space complexity classes below log n are radically different from those above. Due 
to the impossibility of storing pointers to input positions or counting the number of executed steps, many of the standard 
techniques do not work. Results that are “easy” above log n either become difficult to prove, or are not valid any more, or 
are open questions at the moment.

For example, if s(n) ≥ �(log n), it is trivial to show that DSpace(s(n)) is closed under complement. However, the trivial 
argument does not work below log n, because the machine may reject by getting into an infinite loop and we do not have 
enough space to detect such loops by counting executed steps, up to n · 2�(s(n)) , the number of possible configurations. 
To show that DSpace(s(n)) = co-DSpace(s(n)) without any assumptions on s(n), a more sophisticated simulation technique 

✩ A preliminary and weaker version of this work was presented at the 20-th International Conference on Developments in Language Theory (DLT 2016), 
July 25–28, 2016, Montréal, Canada [Vol. 9840 of Lect. Notes Comput. Sci. Springer-Verlag, pp. 190–202].
✩✩ Supported by the Slovak Grant Agency for Science (VEGA) under contract 1/0142/15 “Combinatorial Structures and Complexity of Algorithms” and by 
the Slovak Research and Development Agency under contract APVV-15-0091 “Efficient Algorithms, Automata, and Data Structures”.

E-mail address: viliam.geffert@upjs.sk.

http://dx.doi.org/10.1016/j.ic.2017.02.001
0890-5401/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ic.2017.02.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:viliam.geffert@upjs.sk
http://dx.doi.org/10.1016/j.ic.2017.02.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2017.02.001&domain=pdf


164 V. Geffert / Information and Computation 253 (2017) 163–178

was necessary [30]. The classic Savitch’s simulation of nondeterministic machines by the deterministic ones [29] requires 
actually space of size O ((s(n) + log n)2) because, among others, we have to remember input head positions for machine’s 
configurations on the input of length n. If s(n) is above log n, the logn penalty in the big-O notation disappears. By a more 
complicated technique [28], the space has been reduced to O (s(n) · (s(n) + log n)).

In the nondeterministic case, we have the surprisingly short proof showing that NSpace(s(n)) is closed under comple-
ment for s(n) ≥ �(log n) [21,32] but the problem is still open for s(n) below log n.

The same problem arises for the alternating machines, introduced in [7] to provide a neater view of the relationship 
between time and space complexity classes, by generalization of nondeterminism and parallelism at the same time. It 
is trivial to invert the roles of existential and universal decisions and the roles of accepting and rejecting states, which 
gives a machine accepting the complement of the original language, if the original machine never gets into an infinite loop. Thus, 
ASpace(s(n)) is closed under complement for s(n) ≥ �(log n), since we can force the machine to halt [7, Thm. 2.6]. This does 
not imply anything for s(n) below log n. For example, by inductive counting [21,32] (see also [33]), the hierarchy of s(n)

space bounded machines making a constant number of alternations collapses to the first level for s(n) ≥ �(log n), and hence 
the classes �k- and �k-Space(s(n)) are closed under complement for each k ≥ 1, while the corresponding sublogarithmic 
space classes are provably not closed under complement for each k ≥ 2 [6,12,25].

The importance of even the lowest levels of space bounded computations is established by several results. For example, 
we know that NSpace(log n) separates from DSpace(log n) if and only if NSpace(log log n) separates from DSpace(log log n) on 
unary languages [13]. The sublogarithmic alternating space classes may actually be quite strong, e.g., there exists a binary 
NP-complete language such that its unary coded version is in ASpace(log log n) [15].

In this paper, we shall present some new simulations for ASpace(s(n)), with absolutely no assumptions on s(n)—not 
excluding even functions that are not monotone, e.g., functions that are unbounded, but with s(n) = 0 infinitely many times. 
First, we shall provide a time-efficient simulation of alternating machines with small space by deterministic machines. 
Namely, we shall show that

ASpace(s(n)) ⊆ DTime(n · 2O (s(n))) . (1)

This extends, to sublogarithmic space bounds, the classic result [7, Thm. 3.3] stating that ASpace(s(n)) ⊆ DTime(2O (s(n))) for 
s(n) ≥ log n.

Our deterministic simulation within n · 2O (s(n)) time uses superlinear space, namely, n · 2�(s(n)) . However, it turns out 
that the simulating machine has several special properties, and hence it can be replaced by more powerful machine models, 
space efficiently. Based on this, we shall derive that

ASpace(s(n)) ⊆ 1-NTimeSpace
dm(n · 2O (s(n)),2O (�s(n)�)) ,

which represents a simulation by one-way nondeterministic machines not executing more than n · 2O (s(n)) steps along any 
computation path and using initially delimited worktapes of size 2k·�s(n)� , for some integer constant k ≥ 1. This improves the 
known inclusion ASpace(s(n)) ⊆ NSpace(2O (s(n))) that was proved for s(n) ≥ �(log log n) under some weak constructibility 
assumption [31]. After some modification, we can obtain a simulation by nondeterministic machines with simultaneous 
bounds on time and space using worktapes that are initially empty. However, such machines are no longer one-way:

ASpace(s(n)) ⊆ NTimeSpace(n · 2O (s(n)),2O (s(n))) .

Finally, by converting the deterministic machine—the one introduced by (1) and using n · 2�(s(n)) space—back into an 
alternating device, we can convert a two-way alternating machine into a two-way alternating machine for the complement 
of the original language, keeping the space bound O (s(n)). That is, the alternating space is closed under complement:

ASpace(s(n)) = co-ASpace(s(n)) , for each s(n).

This conversion works with no additional assumptions—it does not depend on whether s(n) is above log n nor on whether 
the original machine gets into infinite loops. This solves a long-standing open problem [6]. Quite surprisingly, our technique 
of complementing does not eliminate infinite loops—the new machine itself rejects by going into infinite loops along some 
computation paths.

It turns out that all these simulations become conceptually much simpler if we consider another reasonable way to 
define space complexity, studied, e.g., in [2,8]: the classes1

ASpace
dm(s(n)). For this reason, in Section 2, we first present 

simulations for the classes ASpace
dm(s(n)), using also some weak constructibility assumptions. After that, in Section 3, all 

results will be updated for the classic complexity classes ASpace(s(n)), where the worktape is initially empty and the value 
s(n) is not known in advance.

1 By XSpace
dm(s(n)), for X ∈ {D, N, A}, we denote the classes of languages accepted by deterministic, nondeterministic, and alternating Turing machines 

starting with a worktape consisting of �s(n)� blank cells delimited by endmarkers, as opposed to the more common complexity classes XSpace(s(n)) where 
the worktape is initially empty and the machine must use its own computational power to make sure that it respects, along each computation path on 
each input of length n, the space bound s(n). Clearly, XSpace(s(n)) ⊆ XSpace

dm(s(n)) and these two classes are equal if �s(n)� is fully space constructible. 
The notation “dm” derives from “Demon” Turing Machines [8].



Download English Version:

https://daneshyari.com/en/article/4950620

Download Persian Version:

https://daneshyari.com/article/4950620

Daneshyari.com

https://daneshyari.com/en/article/4950620
https://daneshyari.com/article/4950620
https://daneshyari.com

