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In studies of molecular evolution, phylogenetic trees are rooted binary trees, whereas 
phylogenetic networks are rooted acyclic digraphs. Edges are directed away from the root 
and leaves are uniquely labeled with taxa in phylogenetic networks. For the purpose 
of validating evolutionary models, biologists check whether or not a phylogenetic tree 
(resp. cluster) is contained in a phylogenetic network on the same taxa. These tree and 
cluster containment problems are known to be NP-complete. A phylogenetic network is 
reticulation-visible if every reticulation node separates the root of the network from at 
least a leaf. We answer an open problem by proving that the tree containment problem 
is solvable in quadratic time for reticulation-visible networks. The key tool used in our 
answer is a powerful decomposition theorem. It also allows us to design a linear-time 
algorithm for the cluster containment problem for networks of this type and to prove that 
every galled network with n leaves has 2(n − 1) reticulation nodes at most.

© 2016 Published by Elsevier Inc.

1. Introduction

How life came to existence and evolved has been a key scientific question in the past hundreds of years. Traditionally, 
a phylogenetic tree has been used to model the evolutionary history of species, in which an internal node represents a 
speciation event and the leaves represent the extant species under study. These evolutionary trees are often reconstructed 
from the gene or protein sequences sampled from the extant species. Since genomic studies have demonstrated that genetic 
material is often transferred between organisms in a non-reproductive manner [4,25], it has been commonly accepted 
that phylogenetic networks are more suitable than phylogenetic trees for modeling reticulation events such as horizontal 
gene transfer, introgression, recombination and hybridization events in genome evolution [6,7,14,23,24]. Mathematically, 
a phylogenetic network is a rooted acyclic digraph with leaves that are uniquely labeled with extant species. The algorithmic 
and combinatorial aspects of networks have been intensively studied over the past two decades (e.g., see [8,14,18,27]).

In phylogenetics, an important task is checking the “consistency” of two evolutionary models. A somewhat simpler (but 
nonetheless very important) version of this task asks whether a given network is consistent with an existing tree model or 
not. This has motivated researchers to study the problem of determining whether a tree is displayed by a network or not, 
which is called the tree containment problem (TCP). The cluster containment problem (CCP) is related algorithmic problem 
that asks whether or not a subset of taxa is a cluster in a tree displayed by a network [18]. Both the TCP and CCP have also 
been investigated in the development of metrics for phylogenetic networks [3,19].
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The TCP and CCP are NP-complete [19], even on a very restricted class of networks [26]. Because of their importance, a 
lot of effort has been made to find network classes for which the TCP and CCP are solvable in polynomial time. For example, 
the TCP has been shown to be solvable in polynomial time for two rather restricted subclasses of reticulation-visible net-
works[12,26]. Here, the reticulation-visibility property was originally introduced to capture an important feature of galled 
networks [17]. A network is reticulation-visible if every reticulation node separates the network root from at least a leaf. 
The evolutionary network of violet species appearing in [22] is reticulation-visible, where each reticulation node represents 
a hybridization event that usually produces a new hybrid species. Gambette et al. also proved that the TCP is polyno-
mial time solvable for binary nearly stable networks and that each reticulation-visible network contains at most 4(n − 1)

reticulations [11]. Other studies related to the TCP include [5,21] and [28].
In this paper, we make three contributions. van Iersel et al. has posed an open problem as to whether or not the TCP 

is solvable in polynomial time for binary reticulation-visible networks [18,26]. In this final version of [13], we present a 
quadratic time TCP algorithm for arbitrary reticulation-visible networks. We would remark that a cubic-time TCP algorithm 
for binary reticulation-visible networks is obtained independently in [2]. In [2], it is also proved that each reticulation-visible 
network has at most 3(n − 1) reticulation nodes, which is the tight bound.

Secondly, a quadratic time CCP algorithm for reticulation-visible networks can be found in [18, page 171]. Here, we 
present a linear time CCP algorithms for this class of networks.

Thirdly, we present a powerful decomposition theorem (Theorem 1) to design our algorithms for the CCP and TCP. 
Empowered by this, we also prove that every galled network with n leaves has 2(n − 1) reticulation nodes at most.

The rest of the paper is organized as follows. Section 2 introduces the basic concepts and notation. In Section 3, we 
develop the decomposition theorem mentioned above. It reveals an important structural property of reticulation-visible 
networks, based on which the two main theorems (Theorems 3 and 4) are proven in Sections 5 and 6, respectively. Finally, 
we conclude with a couple of remarks in Section 7.

2. Basic concepts and notation

2.1. Phylogenetic networks

In phylogenetics, networks are rooted acyclic digraphs that satisfies (i) edges and paths are directed away from a unique 
node called the root, (ii) there is a path from the root to every other node, and (iii) the nodes of indegree one and outdegree 
zero (the leaves) are uniquely labeled. The leaf labels represent bio-molecular sequences, extant organisms or species under 
study.

In a network, the root has indegree zero and outdegree greater than one and each of the other nodes has either indegree 
one or outdegree one exclusively. A node is called a reticulation node if its indegree is strictly greater than one and its 
outdegree is precisely one. A reticulation node is called a bicombination if it has indegree two. Reticulation nodes represent 
reticulation events occurring in evolution. Non-reticulation nodes are called tree nodes, including the root and leaves.

A network is called a bicombining network if every reticulation node is of degree three (i.e., indegree two and outdegree 
one). A network is called binary if the root is of degree two, its leaves are of degree one, and all other nodes are of degree 
three. A phylogenetic tree is a binary network without reticulation nodes.

For convenience in describing the algorithms and proofs, we add an open incoming edge to the root (Fig. 1). This open 
edge is not counted into the degree of the root. Let N be a network. For two nodes u, v in N , u is a parent of v (alternatively, 
v is a child of u) if (u, v) is an edge in N; u is an ancestor of v (alternatively, v is a descendant of u) if there is a path from 
u to v . When u is an ancestor of v , we simply say v is below u and u is above v sometimes.

Let N be a network. We use the following notation:

• ρ(N): the root of N;
• L(N): the set of all leaves in N;
• R(N): the set of all reticulation nodes in N;
• T (N): the set of the root and other tree nodes of outdegree greater than one in N;
• V(N): the set of all nodes in N (i.e., V(N) =R(N) ∪ T (N) ∪L(N));
• E(N): the set of all edges in N;
• p(u): the set of the parents of u ∈ R(N) or the unique parent of u ∈ T (N)\ {ρ(N)};
• c(u): the set of the children of u ∈ T (N) or the unique child of u ∈ R(N);
• DN (u): the subnetwork node-induced by u ∈ V(N) and all the descendants of u;
• N − E: the spanning subnetwork of N with the node set V(N) and the edge set E(N)\E for a subset E ⊆ E(N);
• N − V : the subnetwork of N with the node set V(N)\V and the edge set {(x, y) ∈ E(N) | x /∈ V , y /∈ V } for a subset 

V ⊆ V(N).

Let T be a phylogenetic tree. For S ⊆ V(T ) and w ∈ V(T ), w is called the lowest common ancestor (LCA) of the nodes 
in S , denoted lca(S) if it is an ancestor of every node in S and any other “common” ancestor of the nodes in S is above w
in T .
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