
Information and Computation 252 (2017) 187–200

Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Deeper local search for parameterized and approximation

algorithms for maximum internal spanning tree ✩

Wenjun Li a,b,1, Yixin Cao c,2, Jianer Chen d, Jianxin Wang a,∗,1

a School of Information Science and Engineering, Central South University, Changsha, China
b School of Computer and Communication Engineering, Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on
Transportation, Changsha University of Science and Technology, Changsha, China
c Department of Computing, Hong Kong Polytechnic University, Hong Kong, China
d Department of Computer Science and Engineering, Texas A&M University, College Station, TX, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 May 2015
Received in revised form 27 September
2016
Available online 14 November 2016

Keywords:
Maximum internal spanning tree
Parameterized computation
Local search

The maximum internal spanning tree problem asks for a spanning tree of a given graph
that has the maximum number of internal vertices among all spanning trees of this graph.
In its parameterized version, we are interested in whether the graph has a spanning
tree with at least k internal vertices. Fomin et al. (2013) [4] crafted a very ingenious
reduction rule, and showed that a simple application of this rule is sufficient to yield a
3k-vertex kernel, implying an O ∗(8k)-time parameterized algorithm. Using depth-2 local
search, Knauer and Spoerhase (2015) [9] developed a (5/3)-approximation algorithm for
the optimization version. We try deeper local search: We conduct a thorough combinatorial
analysis on the obtained spanning trees and explore their algorithmic consequences. We
first observe that from the spanning tree obtained by depth-3 local search, one can easily
find a reducible structure and apply the reduction rule of Fomin et al. This gives an
improved kernel of 2k vertices, and as a by-product, a deterministic algorithm running
in time O ∗(4k). We then go even deeper by considering the spanning tree obtained by
depth-5 local search. It is shown that the number of internal vertices of this spanning tree
is at least 2/3 of the maximum number a spanning tree can have, thereby delivering an
improved approximation algorithm with ratio 1.5 for the problem.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Spanning tree is a fundamental concept in graph theory, and finding a spanning tree of the input graph is a routine
step of graph algorithms, though it usually induces no extra cost: Most algorithms will start from exploring the input graph
anyway, and both breadth- and depth-first-search procedures produce a spanning tree as a by-product. However, a graph can
have an exponential number of spanning trees, of which some might suit a specific application better than others. We are
hence asked to find constrained spanning trees, i.e., spanning trees minimizing or maximizing certain objective functions.

✩ Extended abstracts of this paper appeared in the proceedings of ESA 2014 [13] and WADS 2015 [14].

* Corresponding author.
E-mail addresses: liwenjun@csu.edu.cn (W. Li), yixin.cao@polyu.edu.hk (Y. Cao), chen@cse.tamu.edu (J. Chen), jxwang@mail.csu.edu.cn (J. Wang).

1 Supported by the National Natural Science Foundation of China (NSFC) under grants 61420106009, 61232001, 61472449, 61672536, and 61502054.
2 Supported in part by the National Natural Science Foundation of China (NSFC) under grant 61572414 and the Hong Kong Research Grants Council (RGC)

under grant 252026/15E.

http://dx.doi.org/10.1016/j.ic.2016.11.003
0890-5401/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ic.2016.11.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:liwenjun@csu.edu.cn
mailto:yixin.cao@polyu.edu.hk
mailto:chen@cse.tamu.edu
mailto:jxwang@mail.csu.edu.cn
http://dx.doi.org/10.1016/j.ic.2016.11.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2016.11.003&domain=pdf

188 W. Li et al. / Information and Computation 252 (2017) 187–200

The most classic example is the minimum weight spanning tree problem (in weighted graphs), which has an equivalent but
less known formulation, i.e., maximum weight spanning tree. Other constraints that have received wide attention include
minimum diameter spanning tree [7], degree constrained spanning tree [10,11], maximum leaf spanning tree [16], and
maximum internal spanning tree [22]. Unlike the minimum weight spanning tree problem [8], most of these constrained
versions are NP-hard, even on unweighted graphs [18].

The optimization objective we consider in the present paper is to maximize the number of internal vertices (i.e., non-leaf
vertices) of the spanning tree, or equivalently, to minimize the number of its leaves. More formally, the maximum internal
spanning tree problem asks for a spanning tree of a given graph G that has the maximum number of internal vertices among
all spanning trees of G . Containing the Hamiltonian path problem as a special case, it is clearly NP-hard. A very effective
approach applied to this problem is local search, or more specifically, by edge swappings defined as follows. Let T be a
spanning tree of G . If we pick an edge e of the graph that is not used by T and replace by e any other edge in the unique
cycle in T + e, then we get another spanning tree of G [9,19,23,21]. Some edge swapping may increase the number of
internal vertices, which we apply exhaustively. Prieto and Sloper [19] showed that this simple strategy is already sufficient
to achieve a 2-approximation algorithm for the maximum internal spanning tree problem.

An edge swapping can be regarded as a basic step for the local search process of depth-1 on spanning trees. It is
reasonable to consider local search processes of depth-t with t > 1, which examine a sequence of up to t consecutive
edge swappings to seek a possible improvement on a spanning tree. Intuitively, a local search process of larger depth may
result in a better spanning tree. This is indeed the idea used by Knauer and Spoerhase [9], who proved that a local search
process of depth-2 leads to a (5/3)-approximation algorithm for maximum internal spanning tree. We also remark that the
(7/4)-approximation algorithm on graphs without degree-1 vertices by Salamon [21] uses depth-3. Although a local search
process with an even larger depth seems conceivably to lead to further improved spanning trees, it also presents a great (if
not formidable) challenge for the analysis to confirm the improvement. To see how the depth complicates the analysis, the
reader may compare the analysis (of a few lines) for the depth-1 local search process [19,23] with the analysis (of more
than 5 pages) for the depth-2 local search process [9].

We also study the parameterized version of the maximum internal spanning tree problem, which asks whether a given
graph G has a spanning tree with at least k internal vertices, and is known as the k-internal spanning tree problem. Given
an instance (G, k) of k-internal spanning tree, a kernelization algorithm produces in polynomial time an equivalent instance
(G ′, k′) such that k′ ≤ k and that the kernel size (i.e., the number of vertices in G ′) is upper bounded by some function
of k′ . Prieto and Sloper [19] presented an O (k3)-vertex kernel for the problem, and improved it to O (k2) in the journal
version [20]. Fomin et al. [4] crafted a very ingenious reduction rule, and showed that a simple application of this rule is
sufficient to yield a 3k-vertex kernel.

A nonempty independent set X (i.e., a subset of vertices that are pairwise nonadjacent in G) as well as its neighborhood
are called a reducible structure if |X | is at least twice as the cardinality of its neighborhood. To apply the reduction rule
one needs a reducible structure. The observation in [4] is that the leaves of a depth-first-search tree T are necessarily
independent. Therefore, if the graph has at least 3k − 3 vertices, then either the problem has been solved (when T has k
or more internal vertices), or the set of (at least 2k − 2) leaves of T will be the required independent set. It is, however,
very nontrivial to find a reducible structure when G has less than 3k − 3 vertices, and this will be the focus of the first
part of this paper. We apply first a depth-3 local search process to produce a local-optimal spanning tree T of the input
graph. A nontrivial analysis tells us that if T has more leaves than internal vertices, then a subset of the leaves of T and
its neighborhood make the reducible structure. This enables us to apply the reduction rule and claim a 2k-vertex kernel,
resolving a question asked in [4].

Theorem 1.1. The k-internal spanning tree problem has a 2k-vertex kernel.

Priesto and Sloper [19,20] also initiated the study of parameterized algorithms (i.e., algorithms running in time
O (f (k) · nO (1)) for some function f independent of n)3 for k-internal spanning tree, which have undergone a sequence
of improvements. This line of research is closely related to the k-internal out-branching problem, which, given a directed
graph G and a parameter k, asks if G has an out-branching (i.e., a directed spanning tree having exactly one vertex of
in-degree 0) with at least k vertices of positive out-degrees. It is known that any O ∗(f (k))-time algorithm for k-internal
out-branching can solve k-internal spanning tree in the same time—replacing every edge by two arcs of opposite directions,
calling the algorithm for k-internal out-branching, and then dropping the directions from the obtained out-branching,—but
not necessarily the other way. After a successive sequence of studies [6,2,5,25,3], the current best deterministic and ran-
domized parameterized algorithms for k-internal out-branching run in time O ∗(6.86k) and O ∗(4k) respectively, which are
also the best known for k-internal spanning tree. Table 1 summarizes the history of this line of research.

The O ∗(4k)-time randomized algorithm for k-internal out-branching [3, Theorem 180] was obtained using a famous
algebraic technique developed by Koutis and Williams [12], which, however, is very unlikely to be derandomized. As a
corollary of Theorem 1.1, we obtain an O ∗(4k)-time deterministic algorithm for k-internal spanning tree,—it suffices to
apply the O ∗(2n)-time algorithm of Nederlof [17] to the 2k-vertex kernel produced by Theorem 1.1,—matching the running

3 Following convention, we use the O ∗(f (k)) notation to suppress the polynomial factor nO (1) in the running time.

Download English Version:

https://daneshyari.com/en/article/4950636

Download Persian Version:

https://daneshyari.com/article/4950636

Daneshyari.com

https://daneshyari.com/en/article/4950636
https://daneshyari.com/article/4950636
https://daneshyari.com

