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We study finite automata running over infinite binary trees. A run of such an automaton 
is usually said to be accepting if all its branches are accepting. In this article, we relax the 
notion of accepting run by allowing a certain quantity of rejecting branches. More precisely 
we study the following criteria for a run to be accepting:

(i) it contains at most finitely (resp. countably) many rejecting branches;
(ii) it contains infinitely (resp. uncountably) many accepting branches;

(iii) the set of accepting branches is topologically “big”.

In all situations we provide a simple acceptance game that later permits to prove that the 
languages accepted by automata with cardinality constraints are always ω-regular. In the 
case (ii) where one counts accepting branches it leads to new proofs (without appealing to 
logic) of a result of Beauquier and Niwiński.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

There are several natural ways of describing sets of infinite trees. One is logic where, with any formula, one associates 
the set of all trees for which the formula holds. Another option is using finite automata. Finite automata on infinite trees 
(that extends both automata on infinite words and on finite trees) were originally introduced by Rabin in [1] to prove 
the decidability of the monadic second order logic (MSOL) over the full binary tree. Indeed, Rabin proved that for any 
MSOL formula, one can construct a tree automaton such that it accepts a non-empty language if and only if the original 
formula holds at the root of the full binary tree. These automata were also successfully used by Rabin in [2] to solve 
Church’s synthesis problem [3], that asks for constructing a circuit based on a formal specification (typically expressed in 
MSOL) describing the desired input/output behaviour. His approach was to represent the set of all possible behaviours of 
a circuit by an infinite tree (directions code the inputs while node labels along a branch code the outputs) and to reduce 
the synthesis problem to emptiness of a tree automaton accepting all those trees coding circuits satisfying the specification. 
Since then, automata on infinite trees and their variants have been intensively studied and found many applications, in 
particular in logic. Connections between automata on infinite trees and logic are discussed e.g. in the excellent surveys [4,5].
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Roughly speaking a finite automaton on infinite trees is a finite memory machine that takes as input an infinite node-
labelled binary tree and processes it in a top-down fashion as follows. It starts at the root of the tree in its initial state, and 
picks (possibly nondeterministically) two successor states, one per child, according to the current control state, the letter 
at the current node and the transition relation. Then the computation proceeds in parallel from both children, and so on. 
Hence, a run of the automaton on an input tree is a labelling of this tree by control states of the automaton, that should 
satisfy the local constraints imposed by the transition relation. A branch in a run is accepting if the ω-word obtained by 
reading the states along the branch satisfies some acceptance condition (typically an ω-regular condition such as a Büchi or 
a parity condition). Finally, a tree is accepted by the automaton if there exists a run over this tree in which every branch is 
accepting. An ω-regular tree language is a tree language accepted by some tree automaton equipped with a parity condition.

A fundamental result of Rabin is that ω-regular tree languages form a Boolean algebra [1]. The main technical difficulty 
in establishing this result is to show the closure under complementation. Since the publication of this result in 1969, it 
has been a challenging problem to simplify this proof. A much simpler one was obtained by Gurevich and Harrington in 
[6] making use of two-player perfect information games for checking membership of a tree in the language accepted by 
the automaton3: Éloïse (a.k.a. Automaton) builds a run on the input tree while Abélard (a.k.a. Pathfinder) tries to exhibit 
a rejecting branch in the run. Another fruitful connection between automata and games is for emptiness checking. In a 
nutshell the emptiness problem for an automaton on infinite trees can be modelled as a game where Éloïse builds an input 
tree together with a run while Abélard tries to exhibit a rejecting branch in the run. Hence, the emptiness problem for 
tree automata can be reduced to solving a two-player parity game played on a finite graph. Beyond these results, the tight 
connection between automata and games is one of the main tools in automata theory [4,8,9].

There are several levers on which one can act to define alternative families of tree automata/classes of tree languages. 
A first lever is local with respect to the run: it is the condition required for a branch to be accepting, the reasonable options 
here being all classical ω-regular conditions (reachability, Büchi, parity. . . ). A second one has to do with the set of runs. The 
usual definition is existential: a tree is accepted if there exists an accepting run on that tree. Other popular approaches are 
universality, alternation or probabilistic transition functions. A third lever is global with respect to the run: it is the condition 
required for a run to be accepting. The usual definition is that all branches must be accepting for the run to be accepting 
but one could relax this condition by specifying how many branches should be accepting/rejecting. One can do this either by 
counting the number of accepting branches (e.g. infinitely many, uncountably many) or by counting the number of rejecting 
branches (e.g. finitely many, at most countably many): this leads to the notion of automata with cardinality constraints [10,
11]. As these properties can be expressed in MSOL [12], the classes of languages accepted under these various restrictions 
are always ω-regular. However, this logical approach does not give a tractable transformation to standard parity or Büchi 
automata. Another option is to use a notion of topological “bigness” and to require for a run to be accepting that the set 
of accepting branches is big [13,14]. Yet another option considered in [15–17] is to measure (in the usual sense of measure 
theory) the set of accepting branches and to put a constraint on this measure (e.g. positive, equal to one).

The idea of allowing a certain amount of rejecting branches in a run was first considered by Beauquier, Nivat and 
Niwiński in [10,11], where it was required that the number of accepting branches in a run belongs to a specified set of 
cardinals �. In particular, they proved that if � consists of all cardinals greater than some γ , then one obtains an ω-regular 
tree language. Their approach was based on logic (actually they proved that a tree language defined by such an automaton 
can be defined by a �1

1 formula hence, can also be defined by a Büchi tree automaton) while the one we develop here is 
based on designing acceptance games. There is also work on the logical side with decidability results but that do not lead 
to efficient algorithms [12].

Our main contributions are to introduce (automata with cardinality constraints on the number of rejecting branches; 
automata with topological bigness constraints) or revisit (automata with cardinality constraints on the number of accepting 
branches) variants of tree automata where acceptance for a run allows a somehow negligible set of rejecting branches. For 
each model, we provide a game counterpart by means of an equivalent acceptance game and this permits to retrieve the 
classical (and fruitful) connection between automata and game. It also permit to argue that languages defined by those 
classes are always ω-regular. Moreover, in the case where one counts accepting branches we show that the languages that 
we obtain are always accepted by a Büchi automaton, which contrasts with the case where one counts rejecting branches 
where we exhibit a counter-example for that property.

The paper is organised as follows. Section 2 recalls classical concepts while Section 3 introduces the main notions stud-
ied in the paper, namely automata with cardinality constraints and automata with topological bigness constraints. Then, 
Section 4 studies those languages obtained by automata with cardinality constraints on the number of rejecting branches 
while Section 5 is devoted to those languages obtained by automata with cardinality constraints on the number of accepting 
branches. Finally, Section 6 considers automata with topological bigness constraints.

3 Note that the idea of using games to prove this result was already proposed by Büchi in [7].
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