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In Graph Searching, a team of searchers aims at capturing an invisible fugitive moving 
arbitrarily fast in a graph. Equivalently, the searchers try to clear a contaminated network. 
The problem is to compute the minimum number of searchers required to accomplish this 
task. Several variants of Graph Searching have been studied mainly because of their close 
relationship with the pathwidth of a graph.
In this paper, we study the complexity of the Exclusive Graph Searching variant. We show 
that the problem is NP-hard in planar graphs and it can be solved in linear-time in the 
class of cographs. We also show that monotone Exclusive Graph Searching is NP-complete 
in split graphs where Pathwidth is known to be solvable in polynomial time. Moreover, 
we prove that monotone Exclusive Graph Searching is in P in a subclass of star-like graphs 
where Pathwidth is known to be NP-hard.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In Graph Searching [5,18], a team of searchers aims at clearing a contaminated network. Many variants have been studied 
that differ with respect to the moves allowed to the searchers, the ways of clearing the graph and the constraints imposed 
to the search strategies (see the survey [11]). In each variant, the main problem consists of computing the minimum number 
of searchers, called search number of G , required to clear the graph G .

Graph Searching has been introduced by Breish for modeling the rescue of a lost speleologist by a team of searchers 
in a network of caves [5]. Later on, Parsons formalized Graph Searching as a game to clear contaminated networks [18]. 
Formally, in edge Graph Searching, the searchers can be placed at nodes of a graph, removed from nodes or may slide along 
edges. Any edge of the graph is cleared when a searcher slides along it. A clear edge e is recontaminated as soon as there is 
a path from e to a contaminated edge without any searcher on it. As an example, to clear a path P , it is sufficient to place 
a searcher at an end of P and then to slide it until its other end.

Kirousis and Papadimitriou defined node Graph Searching in which searchers can only be placed at and removed from 
nodes, and edges are cleared only when both their endpoints are simultaneously occupied [15]. In this variant, two searchers 
are required to clear a path (v1, · · · , vn), n > 1: place first a searcher at v1, then, for i = 2 to n, place a searcher at vi and 
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remove the searcher at vi−1. Note that, in this variant, it is not possible to clear a path with one searcher since, each time 
the searcher is removed, the whole path is recontaminated.

Then, Bienstock and Seymour defined the mixed Graph Searching [6], in which the allowed moves are similar as in edge 
Graph Searching but an edge e is cleared when a searcher slides along it or when both endpoints of e are simultaneously 
occupied. The edge-strategy described above for the path is also a mixed-strategy.

The search numbers corresponding to the three above mentioned variants are known as edge-, node- and mixed-search 
numbers, denoted by es, ns and s respectively. For instance, for any n-node path Pn , n > 1, es(Pn) = s(Pn) = 1 and ns(Pn) =
2.

One of the main motivations for studying Graph Searching arises from the fact that it provides an algorithmic in-
terpretation of path-decompositions of graphs [20,15]. For the sake of completeness we mention below the definition of 
path-decomposition and pathwidth of a graph.

Definition 1. [20] Let G(V , E) be a graph. A sequence (X1, . . . Xr), of subsets of V (G) is a path-decomposition of G if the 
following conditions hold:

• ⋃
1≤i≤r Xi = V (G).

• For every edge e of G , there is a Xi , with 1 ≤ i ≤ r, which contains both endpoints of e.
• For each i, j, k, where 1 ≤ i ≤ j ≤ k ≤ r, Xi ∩ Xk ⊆ X j .

The width of a path decomposition (X1, . . . Xr) is the maximum size of its subsets minus 1, i.e., maxi≤r |Xi | − 1. The 
pathwidth of G is the minimum width of its path-decompositions.

The node-search number of any graph equals its pathwidth plus one [15,6] and any other “classical” variant differs from 
pathwidth up to a constant ratio (see Related Work). Since computing the pathwidth is NP-hard in many graph classes 
(e.g., [13]), a polynomial-time algorithm for computing some “classical” variant of search number in one of these classes 
would provide a polynomial-time approximation algorithm for pathwidth. To the best of our knowledge, no graph class is 
known where the complexities of pathwidth and some “classical” variant of Graph Searching are different.

An important property of Graph Searching is the monotonicity. A strategy is monotone if no edge is ever recontaminated. 
Each of the node-, edge- and mixed Graph Searching variants is monotone. That is, for any graph G , there is a monotone 
mixed (resp., node, resp., edge) strategy that clears G using s(G) (resp., ns(G), resp., es(G)) searchers [6]. The monotonicity 
property is very important, in particular because it is the corner stone of the link between the node search number of a 
graph and its pathwidth.

Recently, Blin et al. introduced a new variant, namely Exclusive Graph Searching, that appears to be very different from 
the previous ones [2]. They show that the corresponding optimization problem is polynomial in trees and give some ev-
idence that this new variant of the problem behaves differently than pathwidth. For instance, Exclusive Graph Searching is 
not monotone in trees. It is also shown that the search-number in Exclusive Graph Searching may differ exponentially from 
previous variants. However, it equals the pathwidth up to a constant ratio in bounded degree graphs. The complexity of this 
variant in arbitrary graphs is left open.

In this paper, we study the computational complexity of this new variant. In particular, we prove that the computational 
complexities of monotone Exclusive Graph Searching and Pathwidth cannot be compared.

Exclusive Graph Searching. An exclusive search strategy [2] consists of first placing k searchers at distinct nodes of a con-
nected graph G = (V , E). Then, at each step, a searcher at some node v ∈ V can slide along an edge {v, u} ∈ E only if node 
u is not yet occupied by another searcher. By definition, any exclusive search strategy satisfies the exclusivity property: at 
any step, any node is occupied by at most one searcher. Initially, all edges of G are contaminated and an edge e ∈ E is 
cleared if either a searcher slides along it or if both endpoints of e are occupied simultaneously. An edge e is recontaminated
if there is a path, free of searchers, from e to another contaminated edge. In this paper, a node is said clear if it is occupied 
by a searcher or if all its incident edges are clear.

A strategy is winning if eventually all edges of G become clear. As an example, a winning exclusive strategy in a n-node 
star (a tree with n − 1 leafs) consists of: 1) first placing searchers at n − 2 distinct leafs (i.e., all but one leaf, say v), and 
then 2) sliding a searcher from a leaf to the center of the star and then along the last contaminated edge (to v). It is easy 
to see that there are no winning strategies using ≤ n − 3 searchers in an n-node star.

The exclusive search-number of G , xs(G), is the minimum number k such that there is a winning strategy using k searchers 
to clear G . The monotone-exclusive search-number of G , mxs(G), is the smallest k such that there is a winning monotone 
strategy using k searchers to clear G . By definition, xs(G) ≤ mxs(G) for any graph G . Note that this inequality may be 
strict [2]. If mxs(G) = xs(G) for any graph G in some class C of graphs, Exclusive Graph Searching is said monotone in C .

In [2], the question of the complexity of computing xs in arbitrary graphs was left open, as well as the question of 
whether there exists a graph class in which computing the exclusive search-number could provide a polynomial-time ap-
proximation of pathwidth. In this paper, we answer the first question and further investigate the second one.
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