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We consider security properties of cryptographic protocols that can be modelled using 
trace equivalence, a crucial notion when specifying privacy-type properties, like anonymity, 
vote-privacy, and unlinkability. Infinite sets of possible traces are symbolically represented 
using deducibility constraints. We describe an algorithm that decides trace equivalence for 
protocols that use standard primitives and that can be represented using such constraints. 
More precisely, we consider symbolic equivalence between sets of constraint systems, 
and we also consider disequations. Considering sets and disequations is actually crucial 
to decide trace equivalence for processes that may involve else branches and/or private 
channels (for a bounded number of sessions). Our algorithm for deciding symbolic 
equivalence between sets of constraint systems is implemented and performs well in 
practice. Unfortunately, it does not scale up well for deciding trace equivalence between 
processes. This is however the first implemented algorithm deciding trace equivalence on 
such a large class of processes.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The present work is motivated by the decision of security properties of cryptographic protocols. Such protocols are 
proliferating, because of the expansion of digital communications and the increasing concern on security issues. Finding 
attacks/proving the security of such protocols is challenging and has a strong societal impact.

In our work, we assume perfect cryptographic primitives: we consider a formal, symbolic, model of execution. Such an 
assumption may prevent from finding some attacks; the relevance of symbolic models is studied in other research papers 
(see e.g., [1,2]), but it is beyond the scope of the present work.

In this context, the protocols are described in some process algebra, using function symbols to represent the crypto-
graphic primitives and symbolic terms to represent messages. We use the applied pi-calculus [3] in this paper. Many attacks 
on several protocols have been found during the last 20 years. For example, a flaw has been discovered (see [4]) in the 
Single-Sign-On protocol used e.g., by Google Apps. These attacks on formal models of protocols can of course be reproduced 
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on the concrete versions of the protocols. Several techniques and tools have been designed for the formal verification of 
cryptographic protocols. For instance CSP/FdR [5], ProVerif [6], Scyther [7], Avispa [8] and others.

Most results and tools only consider security properties that can be expressed as the (un)reachability of some bad state. 
For instance, the (weak) secrecy of s is the non-reachability of a state, in which s is known by the attacker. Authentication is 
also expressed as the impossibility to reach a state, in which two honest parties hold different values for a variable on which 
they are supposed to agree. In our work, we are interested in more general properties, typically strong secrecy, anonymity, 
or more generally any privacy-type property that cannot be expressed as the (non) reachability of a given state, but rather 
requires the indistinguishability of two processes. For instance, the strong secrecy of s is specified as the indistinguishability 
of P (s) from P (s′), where s′ is a new name. It expresses that the attacker cannot learn any piece of the secret s. Formally, 
these properties, as well as many other interesting security properties, can be expressed using trace equivalence: roughly, two 
processes P and Q are trace equivalent if any sequence of attacker’s actions yields indistinguishable outputs of P and Q .

Some related work. The automated verification of equivalence properties for security protocols was first considered in [9]
(within the spi-calculus). ProVerif also checks some equivalence properties (so-called diff-equivalence) [10], which is a 
stronger equivalence, often too strong, as we will see below with a simple example. More recently, the approach behind 
the Tamarin verification tool [11] has been extended to check equivalence-based properties [12]. Actually, the equivalence 
notion is quite similar to the notion of diff-equivalence used in ProVerif, and therefore suffers from the same drawbacks. 
A few other procedures have been published:

• In [13,14] a decision procedure for the trace equivalence of bounded deterministic processes is proposed. Their proce-
dure relies on an other procedure for deciding the equivalence of constraint systems such as the one developed by [15]
or [16]. In particular, the processes are restricted to be determinate and do not contain (non-trivial) conditional branch-
ing. Furthermore, the procedure seems to be not well-suited for an implementation. Regarding primitives, these works 
allow any primitives that are defined using a subterm convergent rewriting system.

• [17] gives a decision procedure for open-bisimulation for bounded processes in the spi-calculus. This procedure has 
been implemented. The scope is however limited: open-bisimulation is a stronger equivalence notion, and the procedure 
assumes a fixed set of primitives (in particular no asymmetric encryption) and no conditional branching.

• [18] designs a procedure based on Horn clauses for the class of optimally reducing theories, which encompasses sub-
term convergent theories. The procedure is sound and complete but its termination is not guaranteed. It applies to 
determinate processes without replication nor else branches. Moreover, when processes are not determinate, the proce-
dure can be used for both under- and over-approximations of trace equivalence.

Our contribution. Our aim was to design a procedure, which is general enough and efficient enough, so as to automatically 
verify the security of some simple protocols, such as the private authentication protocol (see Example 1) or the e-passport 
protocol analysed e.g., in [19]. Both protocols are beyond the scope of any above mentioned results. An extension of ProVerif

has been developed allowing one to analyse the private authentication protocol [20]. However, ProVerif is still unable for 
instance to deal with the e-passport protocol.

Example 1. We consider the protocol given in [21] designed for transmitting a secret, while not disclosing the identity of 
the sender. In this protocol, a is willing to engage in a communication with b. However, a does not want to disclose her 
identity (nor the identity of b) to the outside world. Consider for instance the following protocol:

A → B : aenc(〈na,pub(ska)〉,pub(skb))

B → A : aenc(〈na, 〈nb,pub(skb)〉〉,pub(ska))

In words, the agent a (playing the role A) generates a new name na and sends it, together with her identity (here public 
key), encrypted with the public key of b. The agent b (playing the role B) replies by generating a new name nb , sending it, 
together with na and his identity pub(skb), encrypted with the public key of a. More formally, using pattern-matching, and 
assuming that each agent a holds a private key ska and a public key pub(ska), which is publicly available, the protocol could 
be written as follows:

PrivAuth1

⎧⎨
⎩

A(ska,pkb) : ν na.out(aenc(〈na,pub(ska)〉,pkb))

B(skb,pka) : in(aenc(〈x,pka〉,pub(skb))).

ν nb.out(aenc(〈x, 〈nb,pub(skb)〉〉,pka))

We will later write A(a, b) for A(ska, pub(skb)),B(b, a) for B(skb, pub(ska)), and B(b, c) for B(skb, pub(skc)).
This is fine, as long as only mutual authentication is concerned. Now, if we want to ensure in addition privacy, an attacker 

should not get any information on who is trying to set up the agreement: B(b, a) and B(b, c) must be indistinguishable. This 
is not the case in the above protocol. Indeed, an attacker can forge e.g., the message aenc(〈pub(ska), pub(ska)〉, pub(skb)) and 
find out whether c = a or not by observing whether b replies or not.

The solution proposed in [21] consists in modifying the process B in such a way that a “decoy” message: aenc(〈nb, nb〉,
pub(ska)) is sent when the received message is not as expected. This message should look like B ’s other message from the 
point of view of an outsider. More formally, this can be modelled using the following process:
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