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So-called ordered variants of the classical notions of pathwidth and treewidth are 
introduced and proposed as proof theoretically meaningful complexity measures for the 
directed acyclic graphs underlying proofs. Ordered pathwidth is roughly the same as proof 
space and the ordered treewidth of a proof is meant to serve as a measure of how far it 
is from being treelike. Length-space lower bounds for k-DNF refutations are generalized to 
arbitrary infinity axioms and strengthened in that the space measure is relaxed to ordered 
treewidth.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Razborov says that “in most cases the basic question of propositional proof complexity boils down to this. Given a 
mathematical statement encoded as a propositional tautology φ and a class of admissible mathematical proofs formalized 
as a propositional proof system P , what is the minimal possible complexity of a φ-proof of φ?” [41, p. 415]. This is also the 
perspective of “Bounded Reverse Mathematics” taken in Cook and Nguyen’s monograph [13, p. xiv].

1.1. Resolution-based proof systems

A proof system of fundamental interest is Resolution. The most important complexity measures for refutations are the 
length, the width and the space of a resolution refutation. Space (formula-space or clause-space) has been introduced by 
Esteban and Torán [18]. Intuitively, a space 100 refutation of a set � of clauses is one that can be presented as follows.

A teacher is in class equipped with a blackboard containing up to 100 clauses. The teacher starts from the empty 
blackboard and finally arrives at one containing the empty clause. The blackboard can be altered by either writing down 
a clause from �, or by wiping out some clause, or by deriving a new clause from clauses currently written on the 
blackboard by means of the Resolution rule.

Some interesting restrictions of Resolution are obtained by requiring a particular simple structure of the DAGs (directed 
acyclic graphs) underlying refutations. Examples are Input, linear and treelike Resolution – we refer to the monograph [26]. 

✩ An extended abstract of this work appeared as [35].
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Interesting extensions of Resolution include R(1), R(2), . . . , R(log) from [28]. The system R(1) is just Resolution, and R(k)

is a straightforward generalization operating with k-DNFs instead of clauses. The treelike versions of these systems are all 
simulated by (daglike) Resolution [27], so all treelike and daglike systems R(k) line up in a hierarchy. The hierarchy is strict 
with respect to length as shown in [17] for the treelike systems and in [46,44] for the daglike ones. The hierarchy is also 
strict with respect to space, see again [17] for the treelike, and [7] for the daglike systems.

From a practical perspective the special interest in Resolution derives from its connections to SAT-solvers with length 
and space of refutations corresponding to time and space of algorithms. We refer to [37] for a recent survey. From the 
more theoretical perspective of “Bounded Reverse Mathematics”, the systems R(k) deserve some special interest because 
length lower bounds for them imply independence from weak arithmetics based on various forms of ∀∃-induction schemes. 
For example, super-quasipolynomial length lower bounds on treelike or daglike R(log) imply independence from relativized 
bounded arithmetics T 1

2 (α) or T 2
2 (α) respectively [28]. See [9] for independence derivable from super-polynomial length 

lower bounds for daglike R(1), R(2), . . .
Concerning the relationship of the complexity measures for (daglike) Resolution, Ben-Sasson and Wigderson [8] famously 

showed how to derive length lower bounds from width lower bounds. Also space lower bounds follow from width lower 
bounds [2] (see [19] for a recent alternative proof) but not vice-versa [36]. Ben-Sasson [6] initiated “the research of op-
timizing two of the measures at once” [6] and proved a trade-off, i.e. a negative answer, for length and width in treelike 
Resolution. Recently, Razborov [42] found an “ultimate” such trade-off. Ben-Sasson and Nordström [7] proved various trade-
offs for length and space, for example, they constructed CNFs refutable by (daglike) Resolution in length O (n) as well as 
in space O (n/ log n), but every refutation in this space has length 2n�(1)

. Beame et al. [5] found a length-space trade-off 
applying to Resolution refutations of superlinear space.

1.2. Infinity axioms

Many of the abovementioned lower bounds for the different complexity measures are witnessed by quite artificial CNFs. 
Recalling the introductory quote, CNFs that naturally express certain combinatorial principles deserve some special interest. 
A large class of such CNFs is obtained from first-order sentences ϕ letting CNFs 〈ϕ〉n naturally describe models of ϕ of 
size n. If ϕ does not have finite models, then these CNFs are contradictory and we ask for the complexity to refute them. 
If ϕ has no model at all, there are polynomial length refutation even in treelike Resolution [43]. If ϕ has no finite but an 
infinite model, i.e., ϕ is an infinity axiom, then exponential length lower bounds have been shown for the treelike systems, 
namely 2�(n) for treelike Resolution by Riis [43], 2�(n log k/k) for treelike R(k) by Dantchev and Riis [16], and already earlier 
2�(

√
n) for treelike R(log) by Krajíček [29].

But the daglike systems have short refutations of some infinity axioms. Stålmarck [47] gave a polynomial length Resolu-
tion refutation of the (CNFs expressing the) least number principle, the infinity axiom asserting a pre-order without minimal 
elements. Dantchev and Riis [16] showed that Resolution needs exponential length to refute any relativized infinity axiom. 
Iterating relativizations of the least number principle yields natural witnesses to the exponential separations of R(k) and 
R(k + 1) [15]. It is not understood which (say, by some model-theoretic criterion) infinity axioms do have short refutations, 
say, in R(k) for constant k; see [14] for a discussion.

As a second example, Maciel et al. [32] gave quasipolynomial length R(log)-refutations of the weak pigeonhole principle
with n2 pigeons and n holes. It is not known whether this can be improved to polynomial. A lower bound 2�(n/(log n)2) is 
known [40] for Resolution. We refer to [39,45] for surveys of the proof complexity of pigeonhole principles.

For Resolution, space lower bounds have been obtained in [18] for the pigeonhole principles and in [1] for the least 
number principle. [17] generalizes these bounds to R(k).

1.3. Ordered treewidth

Short R(log)-refutations of infinity axioms cannot be treelike, in Razborov’s words, they “must necessarily use a high 
degree of parallelism.” [42, Abstract]. It would be desirable to quantify the amount of parallelism used by a proof and 
consider it as a complexity measure of proofs.

An hint how to do so comes from considering space. Space can be seen as a connectivity measure of the DAG underlying 
a refutation: Esteban and Torán [18] characterized space as a certain pebbling number of the refutation DAG. Following 
Beame et al. [5] the space of a linearly written Resolution refutation is the minimal number w such that at any derivation 
step at most w many already derived clauses are to be used at a later step. These characterizations are superficially rem-
iniscent of characterizations of pathwidth for undirected graphs (see [24] and [25]), the second being akin to the vertex 
separation number.

Pathwidth and treewidth play an important role in Robertson and Seymour’s graph minors project and have evolved as 
very successful and ubiquitously used complexity measures of graphs. We refer to [10] for a survey. Many graph problems 
can be efficiently solved by dynamic programing on a tree-decomposition witnessing small treewidth (see e.g. [20, Chap-
ter 11]), and in fact treewidth turned out to be the key parameter to understand the complexity of graph homomorphism 
problems ([22,33,31] is a sample of some seminal results).

With an eye to proof DAGs, we introduce notions of path and tree decompositions of digraphs with associated width 
notions ordered pathwidth and ordered treewidth. Starting with [23] a number of width notions for digraphs have been 
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