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We propose a silent self-stabilizing leader election algorithm for bidirectional arbitrary 
connected identified networks. This algorithm is written in the locally shared memory 
model under the distributed unfair daemon. It requires no global knowledge on the 
network. Its stabilization time is in �(n3) steps in the worst case, where n is the number 
of processes. Its memory requirement is asymptotically optimal, i.e., �(logn) bits per 
processes. Its round complexity is of the same order of magnitude — i.e., �(n) rounds — as 
the best existing algorithms designed with similar settings. To the best of our knowledge, 
this is the first self-stabilizing leader election algorithm for arbitrary identified networks 
that is proven to achieve a stabilization time polynomial in steps. By contrast, we show 
that the previous best existing algorithms designed with similar settings stabilize in a non-
polynomial number of steps in the worst case.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In distributed computing, the leader election problem consists in distinguishing a single process, so-called the leader, 
among the others. We consider here identified networks. So, as it is usually done, we augment the problem by requiring 
all processes to eventually know the identifier of the leader. The leader election is fundamental as it is a basic compo-
nent to solve many other important problems, e.g., consensus, spanning tree constructions, implementing broadcasting and 
convergecasting methods, etc.

Self-stabilization [4,5] is a versatile technique to withstand any transient fault in a distributed system: a self-stabilizing 
algorithm is able to recover, i.e., reach a legitimate configuration, in finite time, regardless the arbitrary initial configuration 
of the system, and therefore also after the occurrence of transient faults. Thus, self-stabilization makes no hypotheses on 
the nature or extent of transient faults that could hit the system, and recovers from the effects of those faults in a unified 
manner. Such versatility comes at a price. After transient faults, there is a finite period of time, called the stabilization 
phase, before the system returns to a legitimate configuration. The stabilization time is then the worst case duration of the 
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stabilization phase, i.e., the maximum time to reach a legitimate configuration starting from an arbitrary one. Notice that 
efficiency of self-stabilizing algorithms is mainly evaluated according to their stabilization time and memory requirement.

We consider deterministic1 asynchronous silent self-stabilizing leader election problem in bidirectional, connected, and 
identified networks of arbitrary topology. We investigate solutions to this problem which are written in the locally shared 
memory model introduced by Dijkstra [4]. In this model, the distributed unfair daemon is known as the weakest scheduling 
assumption. Under such an assumption, proving that a given algorithm is self-stabilizing implies that the stabilization time 
must be finite in terms of atomic steps. However, despite some solutions assuming all these settings (in particular the 
unfairness assumption) are available in the literature [1,2,6], none of them is proven to achieve a polynomial upper bound 
in steps on its stabilization time. Actually, the time complexities of all these solutions are analyzed in terms of rounds only.

Related work. In [7], Dolev et al. showed that silent self-stabilizing leader election requires �(log n) bits per process, where n
is the number of processes. Notice that non-silent self-stabilizing leader election can be achieved using less memory, e.g., the 
non-silent self-stabilizing leader election algorithm for unoriented ring-shaped networks given in [8] requires O (log log n)

space per process.
Self-stabilizing leader election algorithms for arbitrary connected identified networks have been proposed in the 

message-passing model [9–11]. First, the algorithm of Afek and Bremler [9] stabilizes in O (n) rounds using �(log n) bits per 
process. But, it assumes that the link-capacity is bounded by a value B , known by all processes. Two solutions that stabilize 
in O (D) rounds, where D is the diameter of the network, have been proposed in [10,11]. However, both solutions assume 
that processes know some upper bound D on the diameter D; and require �(log D log n) bits per process.

Several solutions are also given in the shared memory model [12,13,6,1,2,14]. The algorithm proposed by Dolev and 
Herman [12] is not silent, works under a fair daemon, and assume that all processes know a bound N on the number of 
processes. This solution stabilizes in O (D) rounds using �(N log N) bits per process. The algorithm of Arora and Gouda [13]
works under a weakly fair daemon and assume the knowledge of some bound N on the number of processes. This solution 
stabilizes in O (N) rounds using �(log N) bits per process.

Datta et al. [6] propose the first self-stabilizing leader election algorithm (for arbitrary connected identified networks) 
proven under the distributed unfair daemon. This algorithm stabilizes in O (n) rounds. However, the space complexity of 
this algorithm is unbounded. (More precisely, the algorithm requires each process to maintain an unbounded integer in its 
local memory.)

Solutions in [1,2,14] have a memory requirement which is asymptotically optimal (i.e. in �(log n)). The algorithm pro-
posed by Kravchik and Kutten [14] assumes a synchronous daemon and the stabilization time of this latter is in O (D)

rounds. The two solutions proposed by Datta et al. in [1,2] assume a distributed unfair daemon and have a stabilization 
time in O (n) rounds. However, despite these two algorithms stabilizing within a finite number of steps (indeed, they are 
proven assuming an unfair daemon), no step complexity analysis is proposed.

Contribution. We propose a silent self-stabilizing leader election algorithm for arbitrary connected and identified networks. 
Our solution is written in the locally shared memory model assuming a distributed unfair daemon, the weakest scheduling 
assumption. Our algorithm assumes no knowledge of any global parameter (e.g., an upper bound on D or n) of the network. 
Like previous solutions of the literature [1,2], it is asymptotically optimal in space (i.e., it can be implemented using �(log n)

bits per process), and it stabilizes in �(n) rounds in the worst case. Yet, contrary to those solutions, we show that our 
algorithm has a stabilization time in �(n3) steps in the worst case.

For fair comparison, we have also studied the step complexity of the algorithms given in [1,2], noted here DLV and 
DLV2, respectively. These latter are the closest to ours in terms of performance. We show that their stabilization time is 
not polynomial. Indeed, there is no constant α such that the stabilization time of DLV is in O (nα) steps. More precisely, 
we show that fixing α to any constant greater than or equal to 4, for every β ≥ 2, there exists a network of n = 2α−1 × β

processes in which there exists a possible execution that stabilizes in �(nα) steps. Similarly, for n ≥ 5, there exists a network 

and a possible execution of DLV2 that stabilizes in �(2

⌊
n−1

4

⌋
) steps.

Roadmap. The next section is dedicated to computational model and basic definitions. In Section 3, we propose our 
self-stabilizing leader election algorithm. We prove its correctness in Section 4. In the same section, we also study its 
stabilization time in both steps and rounds. We show that the stabilization time of the self-stabilizing leader election algo-
rithms given in [1,2] are not polynomial in steps in Sections 5 and 6, respectively. We present some experimental results in 
Section 7. We conclude in Section 8.

2. Computational model

2.1. Distributed systems

We consider distributed systems made of n processes. Each process can communicate with a subset of other processes, 
called its neighbors. We denote by Np the set of neighbors of process p. Communications are assumed to be bidirectional, 

1 We only consider here deterministic algorithms.
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