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We consider the Do-All problem, where p cooperating processors need to complete t
similar and independent tasks in an adversarial setting. Here we deal with a synchronous 
message passing system with processors that are subject to crash failures. Efficiency of 
algorithms in this setting is measured in terms of workcomplexity and communication
complexity. When work and communication are considered to be comparable resources, 
then the overall efficiency is meaningfully expressed in terms of effort defined as work
+ communication. We develop and analyze a constructive algorithm that has work O(t +
p log p (

√
p log p +√

t log t )) and a nonconstructive algorithm that has work O(t + p log2 p). 
The latter result is close to the lower bound �(t + p log p/ log log p) on work. The effort 
of each of these algorithms is proportional to its work when the number of crashes is 
bounded above by c p, for some positive constant c < 1. We also present a nonconstructive 
algorithm that has effort O(t + p1.77).

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Performing a collection of tasks by processors prone to failures is among the fundamental problems in fault-tolerant 
distributed computing. We consider the problem called Do-All, where the processors cooperate on tasks that are similar, 
independent, and idempotent. Simple instances of this include checking all the points in a large solution space, attempting 
either to generate a witness or to refute its existence, and scheduling collections of tasks admitting “at least once” execution 
semantics. We consider the synchronous setting with crash-prone processors that communicate via point-to-point messages, 
where t tasks need to be performed by p processors subject to f crash failures, provided at least one processor does not 
crash (i.e., f ≤ p − 1).

Synchronous message-passing solutions for Do-All were first developed by Dwork et al. [27] who estimated the perfor-
mance of their algorithms in terms of effort defined as the sum of task-oriented work and communication. Task-oriented 
work counts only the processing steps expended on performing tasks and it discounts any steps spent idling or waiting for 
messages. Communication costs are measured as the message complexity, calculated as the total number of point-to-point 
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messages. Note that the time of algorithm executions may be very large, for example, when f can be p − 1, time may be at 
least linear in t for the cases where one remaining processor must perform all tasks. Thus time is not normally used to de-
scribe the efficiency of Do-All algorithms when large number of failures is allowed. We also measure algorithm performance 
in terms of effort, except that we use a more conservative approach. Instead of task-oriented work, we include available 
processor steps complexity (or total work) defined by Kanellakis and Shvartsman [38] that accounts for all steps taken by 
each processor, including idling, until the processor either terminates the computation or crashes. Thus we define the effort
of an algorithm to be W +M, where W is its total work complexity and M is its message complexity. Other prior research 
focused on developing Do-All algorithms that are efficient in terms of work, then dealing with communication efficiency as 
a secondary goal, e.g., using the lexicographic complexity [24].

Trade-offs between work and communication in solutions of Do-All are to be expected, indeed, communication improves 
coordination among processors with the potential of reducing redundant work in unreliable systems. There are two direct 
ways in which a processor can get to know that a certain task is complete in a message-passing system: the processor can 
either perform the task, or it can receive a message that the task was completed by another processor. Note that Do-All can 
be solved without any communication: simply have each processor perform each task. The work of such an algorithm is 
O(p · t). On the other hand, an algorithm may cause each processor to always share its knowledge with all other processors 
in an attempt to reduce work. This may result in efficient work, but the communication complexity of such an algorithm is 
�(p · t): each time a processor completes a task, it sends a message to all other processors. Thus it is highly desirable to 
develop algorithms for which both work is o(p · t) and communication is o(p · t). This makes it meaningful to balance work 
and communication, and to consider them as comparable resources. These observations motivate the use of the quantity 
W +M as a unifying performance metric.

The performance bounds of our algorithms are expressed in terms of three parameters: the number of processors p, the 
number of tasks t , and the number of crashes f that may occur in the course of an execution. Our algorithms place no 
constraints on the relationship between t and p; these parameters are independent in our algorithms and the complexity 
bounds. The only restriction on f is that at least one processor does not crash, i.e., f < p.

We say that a parameter is known when it can be used in the code of an algorithm. The parameters p and t are 
always known. When the parameter f appears in performance bounds, then this indicates that the algorithm is designed to 
optimize performance for the number of crashes that is at most f . When f < p is used as a parameter then f is known. 
When f is not used in the code of an algorithm then it is only known that f ≤ p − 1. It so happens that if f appears in 
an algorithm in this paper, then the corresponding communication complexity depends on f , whereas the bounds on the 
work complexity involve only p and t .

We consider an adversarial setting, in which a nefarious adversary causes processors to crash. An adversary is f -bounded
if f < p is an upper bound on the number of crashes in any execution. When stating a performance bound for a known 
f < p we normally state that the bound holds “for an f -bounded adversary.” The (p − 1)-bounded adversary is called 
unbounded. An f -bounded adversary is called linearly bounded if f ≤ c p, for some positive constant c < 1. Our algorithms 
always solve Do-All when exposed to the unbounded adversary, but their message complexity may be especially efficient 
when the adversary is linearly-bounded.

We call a deterministic algorithm constructive if its code can be produced by a deterministic sequential algorithm in time 
polynomial in t and p. This is in contrast with nonconstructive algorithms that may rely on combinatorial objects that are 
only known to exist. Methodologically, starting with a constructive algorithm, we trade constructiveness for better effort 
bounds in producing nonconstructive algorithms.

We aim for algorithmic solutions for Do-All that attain good effort complexity, rather than seeking just work-efficient 
solutions. Here a key challenge, besides tolerating crashes and controlling work, is to ensure that communication costs 
do not exceed work complexity. Whereas any two processors can communicate in any step of computation, in our algo-
rithms we limit communication by allowing messaging to take place over certain constant-degree subnetworks. To this 
end, we use constructive graphs with good “expansion” properties, and this contributes to the emerging understanding of 
how expansion-related properties of the underlying communication schemes can be used to improve fault tolerance and 
efficiency.

Our results. We present a new way of structuring algorithms for the p-processor, t-task Do-All problem that allows for 
both work and communication to be controlled in the presence of adaptive adversaries. We give a generic algorithm for 
performing work in systems with crash-prone processors, and we parameterize it by (i) task-assignment rules and (ii) virtual 
overlay graphs superimposed on the underlying communication medium. We now detail our contributions.

I. We present a deterministic constructive algorithm, called Balance-Load, that uses a balancing task allocation policy 
(Section 5). This algorithm solves Do-All in any execution with at least one non-crashed processor, and its performance 
is tuned to a known upper bound f on the number of crashes, where f < p. The algorithm’s work is W = O(t +
p log p (

√
p log p +√

t log t )), which does not depend on f , while the message complexity does depend on f . When the 
adversary is additionally constrained to be linearly-bounded, the message complexity of the algorithm is M = O(W).

No prior algorithms using point-to-point messaging attained total work (available processor steps) that is both o(p2) and 
o(t2) against the f -bounded adversary, for any known f < p. By using embedded graphs whose properties depend on f , 
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