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We present a framework for defining automata for unordered data trees that is parametri-
sed by the way in which multisets of children nodes are described. Presburger tree au-
tomata and alternating Presburger tree automata are particular instances. We establish the 
usual equivalence in expressiveness of tree automata and MSO for our framework. We then 
investigate subclasses of automata for unordered trees for which testing language equiva-
lence is in P-time. Starting from automata in our framework that describe multisets of 
children by finite automata, we propose two approaches to do this deterministically. We 
show that confluent horizontal evaluation leads to polynomial-time emptiness and univer-
sality, but coNP-complete emptiness and intersection. Finally, efficient algorithms can be 
obtained by imposing an order of horizontal evaluation globally for all automata in the 
class. Depending on the choice of the order, we obtain different classes of automata, each 
of which has the same expressiveness as Counting Mso.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Data trees are a general and common model of hierarchical data structures, used in programming languages, structured 
documents, and in databases with nested relations. They are finite trees in which the edges or the nodes are labelled by 
data values from an infinite alphabet, most typically strings over some finite alphabet.

Unordered data trees are data trees for which there is, a priori, neither an order on the children of a tree node, nor 
a bound on their number. In the case where only the edges are labelled by data values, unordered data trees can be 
naturally represented in the Json format (the JavaScript Object Notation [2]) as illustrated in Fig. 1[p2]. Json is a recent 
language-independent format for nested key-value stores, which has already found much interest in Web browsers and for
NoSql databases such as Ibm’s Jaql [3]. The unordered data tree of Fig. 1[p2] represents a part of a file system as it can be 
found on any modern operating system. As stated by the posix standard, there is no a priori order on the elements of a 
directory, so directory file trees are unordered data trees.
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Fig. 1. Unordered data trees in Json format, describing a typical file tree.

Logics and automata for unordered data trees were studied in the last twenty years mostly for querying Xml documents 
[4–6] and more recently for querying NoSql databases [7]. They were already studied earlier, for modelling feature structures 
in computational linguistics [8] and records in programming languages [9–11]. In particular, it was shown that Presburger 
tree automata can define the same languages of unordered data trees as Presburger Mso [4,5]. It is also folklore that 
the feature automata from [11] have the same expressiveness as Counting MSO, i.e., the restriction of Presburger Mso to 
counting constraints.

Counting Mso is still sufficiently expressive for most applications, when extended with regular expressions for match-
ing data values. For instance, it can be used to express and verify that a LATEX repository contains exactly one main file, 
i.e. one file whose name matches the regular expression *“.tex” (where * matches any string) and whose content matches 
“\documentclass”*. This is a common type of requirement, for instance when uploading the sources of a paper for remote 
compilation. Only main files can be compiled; others do not describe complete documents and are just meant to be included 
by the main file. If there are several main files, it is not clear which one should be compiled.

The mentioned notions of tree automata for unordered data trees have the advantage that membership can be tested 
in polynomial time. But they also have at least two disadvantages. First, they are inconvenient for modelling, since the 
nondeterministic semantics may intervene in a surprising manner with counting children in a given state. And second, when 
it comes to static analysis problems such as satisfiability, inclusion, or equivalence checking, they lack relevant subclasses of 
automata for which these problems can be solved efficiently. For Presburger tree automata, the problem is that their notion 
of determinism is limited to vertical processing, so that none of the above problems can be solved efficiently even for flat 
unordered trees. Feature automata [11] have a satisfactory notion of determinism, which captures vertical and horizontal 
processing, so that the above problems can be solved in polynomial time. This does not help much, however, since feature 
automata may grow exponentially in size when expressing simple patterns such as {a1 : {}, a2 : {}, . . . , an : {}} where all ai
are different data values. The problem here is that feature automata must be able to read the n different data values in all 
possible orders. This requires 2n states in order to memorise which subset of the n data values has already been read.

The first contribution of this paper is a general framework for defining automata for unordered data trees. Similarly to 
the framework for hedge automata for unranked ordered trees in [12], we keep the way in which horizontal languages are 
specified as a parameter. The canonical choices are to use counting constraints, leading to counting tree automata having 
the same expressiveness as feature automata, or Presburger constraints leading to Presburger tree automata. Alternating 
automata for unordered data trees are also supported by our framework. In particular, we obtain definitions of alternating 
counting tree automata and of alternating Presburger tree automata, which have not been studied before. It turns out that 
the alternating models are indeed more natural for modelling properties of unordered data trees than their nondeterministic 
counterparts. The advantage is that any node of the tree can be assigned to several states at the same time, so that state 
counting cannot be compromised by nondeterministic state choices; Example 22[p13] provides a concrete case showing that 
this typically happens in practice.

We establish the classical equivalence between monadic second-order logic (Mso) and the automata notions introduced 
by our framework. Which variant of Mso is chosen depends on which descriptor class of horizontal languages is permitted 
by the automata. In order to make the equivalence work, we have to impose some restrictions on the descriptor classes 
that are satisfied by all usual choices. Under these restrictions, we can also show that alternating automata have the same 
expressiveness as nondeterministic automata. The equivalence proof between Mso and nondeterministic automata is based 
on the usual closure properties of tree languages, which we establish for the automata defined in our framework. In order 
to show closure under complement, we rely on the notion of vertical determinism known from previous work on hedge 
automata and Presburger tree automata.

The second contribution is a study of subclasses of automata for unordered trees for which the usual decision problems 
can be solved efficiently. The focus here is on finding a good notion of horizontal determinism in addition to the usual 
vertical determinism. In the spirit of stepwise tree automata for unranked ordered trees [13], we shall use a single finite 
automaton for defining the many horizontal languages in the rules of an automaton. The horizontal languages are languages 
of multisets, whose elements may be read nondeterministically in any order by the finite automaton. Unsurprisingly, the 
membership problem becomes NP-hard in this case, since all orders must be inspected in the worst case. A first notion of 
horizontal determinism can then be defined by a restriction to confluent horizontal rewriting, so that the order of rewriting 
becomes irrelevant. For instance, one can test the above arity in the order a1, . . . , an or else in the inverse order (but not 
necessarily in all orders, in contrast to feature automata). Our first positive result is that the restriction to confluent rewriting 
leads to polynomial-time membership, emptiness, and universality, as one might have hoped. However, the emptiness of 
binary intersections as well as inclusion still suffers from coNP-completeness, which might appear a little surprising, so 
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