
Information Processing Letters 123 (2017) 8–13

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Finite-state concurrent programs can be expressed succinctly 

in triple normal form

Paul C. Attie

Department of Computer Science, American University of Beirut, Beirut, Lebanon

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 July 2016
Received in revised form 17 January 2017
Accepted 16 February 2017
Available online xxxx
Communicated by Krishnendu Chatterjee

Keywords:
Concurrency
Finite-state concurrent programs
Expressive completeness

I show that any finite-state shared-memory concurrent program P can be transformed 
into triple normal form: all variables are shared between exactly three processes, and the 
guards on actions are conjunctions of conditions over this triple-shared state. My result is 
constructive, since the transformation that I present is syntactic, and is easily implemented.
If (1) action guards are in disjunctive normal form, or are short, i.e., of size logarithmic in 
the size of P, and (2) the number of shared variables is logarithmic in the size of P, then 
the triple normal form program has size polynomial in the size of P, and the transformation 
is computable in polynomial time.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

I present a transformation that starts with a finite-
state shared-memory concurrent program P and produces 
a strongly bisimilar concurrent program P that is in triple 
normal form: (1) P uses only 3-process shared variables, 
and (2) every process Pi in P shares and updates state 
with other processes on a triple-by-triple basis. That is, Pi
shares and updates state with P j and Pk , and also with 
P j′ and Pk′ . The overall actions of Pi are “conjunctions” 
of actions over Pi, P j, Pk on one hand, and Pi, P j′ , Pk′ on 
the other hand. Likewise for all other triples that Pi is in-
volved in.

The transformation preserves the structure of P, both 
syntactically and semantically. Each action in P is derived 
directly from a particular action in P, and the global state 
transition diagram of P is strongly bisimilar to the global 
state transition diagram of P. The transformation requires 
that action guards be first rewritten in disjunctive normal 
form, and so may incur exponential complexity in the size 
of the guards. In practice however, guards in concurrent 
programs tend to be short. Also, the transformation is ex-

E-mail address: paul.attie@aub.edu.lb.

ponential in the number m of shared variables of P, and so 
is polynomial only if m is logarithmic in the size of P. This 
limitation on the number of shared variables may seem re-
strictive, but it applies only to variables that are both read 
and written by more than one process. A variable that is 
written by one process and read by several is not “shared” 
in my model, and I implement it as part of the local state 
of the process which writes to it. For example, many mu-
tual exclusion algorithms have a single shared “turn” vari-
able, and many local “flag” variables.

2. Model of concurrent computation

A finite-state shared-memory concurrent program P =
P1‖ · · · ‖P K consists of a finite number K of fixed sequen-
tial processes P1, . . . , P K running in parallel. With every 
process Pi , 1 � i � K , associate a single unique index i. 
Each Pi is a synchronization skeleton [4], i.e., a directed 
multigraph where each node is a local state of Pi , which 
is labeled by a unique name si , and where each arc is la-
beled with a guarded command [3] Bi → Ai consisting of a 
guard Bi and corresponding action Ai . I write such an arc 
as the tuple (si, Bi → Ai, s′

i), where si is the source node 
and s′

i is the target node.

http://dx.doi.org/10.1016/j.ipl.2017.02.004
0020-0190/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2017.02.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:paul.attie@aub.edu.lb
http://dx.doi.org/10.1016/j.ipl.2017.02.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2017.02.004&domain=pdf


P.C. Attie / Information Processing Letters 123 (2017) 8–13 9

Let Si denote the set of local states of Pi . With each Pi , 
associate a finite set APi of atomic propositions, and a map-
ping V i : Si → (APi → {true, false}) from local states of Pi

to boolean valuations over APi : for pi ∈ APi , V i(si)(pi) is 
the value of pi in si . Without loss of generality, assume 
V i(si) �= V i(s′

i) when si �= s′
i , i.e., different local states have 

different valuations. As Pi executes transitions and changes 
its local state, the atomic propositions in APi are updated, 
since the valuation changes. Atomic propositions are not 
shared: APi ∩ AP j = ∅ when i �= j. Any process P j , j �= i, 
can read (via guards) but not update the atomic proposi-
tions in APi . Define the set of all atomic propositions AP =
AP1 ∪ · · · ∪ APK . There is also a finite set SH = {x1, . . . , xm}
of shared variables, which can be read and written by ev-
ery process. Each x� , 1 � � � m, takes values from some 
finite domain D� . For any arc (si, Bi → Ai, s′

i) of process Pi , 
the guard Bi is a propositional formula over atomic propo-
sitions in AP − APi and shared variable tests of the form 
x� = c where c ∈ D� is a constant. The atomic proposi-
tions in APi are referenced implicitly by the choice of start 
state si . The action Ai is a multiple assignment that up-
dates the shared variables.

A global state s is a tuple of the form s = (s1, . . . , si, . . . ,
sK , v1, . . . , vm) where si is the current local state of Pi

and v1, . . . , vm is a list giving the values of x1, . . . , xm

in s, respectively. For a propositional formula B , define 
s(B) as usual: s(“x = c”) = true iff s(x) = c, s(B1 ∧ B2) =
s(B1) ∧ s(B2), s(¬B1) = ¬s(B1). If s(B) = true, write 
s |= B . Suppose that Pi contains an arc (si, Bi → Ai, s′

i)

and that s |= Bi . Then, a possible next state is s′ =
(s1, . . . , s′

i, . . . , sK , v ′
1, . . . , v

′
m) where v ′

1, . . . , v
′
m are the 

new values for x1, . . . , xm resulting from the execution of 
action Ai . The set of all (and only) such triples (s, i, s′) con-
stitutes the next-state relation of program P . In this case, 
we say that (si, Bi → Ai, s′

i) is enabled in s. Thus, at each 
step of the computation, a process with an enabled arc 
is nondeterministically selected to be executed next, i.e., 
I model parallelism by nondeterministic interleaving of the 
“atomic” transitions of the individual processes Pi . Atomic 
transitions have a large grain of atomicity; evaluation of Bi , 
execution of Ai , and change of local state of Pi from si

to s′
i , must all occur as a single indivisible transition.

Definition 1. Let s = (s1, . . . , si, . . . , sK , v1, . . . , vm) be a 
global state. For atomic proposition pi ∈ APi , 1 � i � K , 
s(pi) � V i(si)(pi), and for shared variable x� , 1 � � � m, 
s(x�) � v� . Also s�i � si , i.e., s�i is the local state of Pi in s, 
and s�AP � {p ∈ AP | s(p) = true} i.e., s�AP is the set of 
atomic propositions that are true in state s.

Let StP be a given set of initial (“start”) states in which 
computations of P can begin. A computation path of P is 
a sequence of states whose first state is in StP and where 
each successive pair of states (together with some process 
index i) are related by the next-state relation. A state is 
reachable iff it lies on a computation path. I re-define a 
concurrent program P = (StP , P1‖ · · · ‖P K ) to be the par-
allel composition of K sequential processes, P1, . . . , P K , 
together with a set StP of initial states.

Definition 2 (Global state transition diagram). The global state 
transition diagram generated by concurrent program P =
(StP , P1‖ · · · ‖P K ) is a Kripke structure M = (StP , S, R) as 
follows:

1. S is the set of all reachable global states of P .
2. R is the next-state relation given above, and restricted 

to S .

In the sequel, I use “GSTD” for “global state transition 
diagram”. The semantics of a concurrent program is given 
by its GSTD, and I define two concurrent programs to be 
strongly bisimilar iff their GSTD’s are.

Definition 3 (Strong bisimulation). Let M = (St, S, R) and 
M ′ = (St′, S ′, R ′) be two Kripke structures with the same 
underlying set AP of atomic propositions. A relation B ⊆
S × S ′ is a strong bisimulation between M and M ′ iff, when-
ever B(s, s′), then (1) s�AP = s′�AP, (2) if (s, i, u) ∈ R then 
∃u′ : (s′, i, u′) ∈ R ′ ∧ B(u, u′), and (3) if (s′, i, u′) ∈ R ′ then 
∃u : (s, i, u) ∈ R ∧ B(u, u′). Define M ∼ M ′ , (M and M ′
are strongly bisimilar) iff there exists a strong bisimulation 
B ⊆ S × S ′ between M and M ′ such that ∀s ∈ St, ∃s′ ∈ St′ :
B(s, s′) and ∀s′ ∈ St′, ∃s ∈ St : B(s, s′).

3. Triple normal form

Let G1, G2 be guarded commands, and let ⊗ be a bi-
nary infix operator on guarded commands. The operational 
semantics of G1 ⊗ G2 is that both G1 and G2 are executed, 
that is, the guards of both G1 and G2 hold at the same 
time, and the actions of G1 and G2 are executed simul-
taneously, as a single parallel assignment statement. ⊗ is 
idempotent: G1 ⊗ G1 = G1. When G1 �= G2, the semantics 
of G1 ⊗ G2 is well-defined only if there are no conflicting 
assignments to shared variables in G1 and G2. This is al-
ways the case for the programs that I consider. As ⊗ is 
clearly commutative and associative, I use an indexed ver-
sion 

⊗
of ⊗. See [2] for a detailed discussion of ⊗.

Process index set notation. I use [K ] for the set {1, . . . , K }, 
and i, j, k, � and primed variants as process indices ranging 
implicitly over [K ]. Other restrictions on the range (i.e., in 
quantifications 

∧
, 
∨

, 
⊗

) are given explicitly, e.g., 
∧

j : j �=�

also restricts j to be not equal to �. Define T(i, j, k) � i ∈
[K ] ∧ j ∈ [K ] ∧ k ∈ [K ] ∧ i �= j ∧ j �= k ∧ k �= i, i.e., T(i, j, k)

is the set of triples in [K ] with distinct elements. For ex-
ample, in 

⊗
j : T(i, j,�) , j ranges over all indices in [K ] that 

are different than i and � (given i �= �), and in 
⊗

j,k : T(i, j,k) , 
j and k range over all pairs of indices in [K ] that are dif-
ferent than i and also different than each other. Also, I use 
j, k �= � to abbreviate j �= � ∧ k �= �.

Definition 4 (Triple normal form). A concurrent program 
P = (StP , P1‖ · · · ‖P K ) is in triple normal form iff the fol-
lowing four conditions all hold:

1. every arc of every process Pi has the form
(si, 

⊗
j,k : T(i, j,k) B jk

i → A jk
i , s′

i), where B jk
i → A jk

i is a 
guarded command,



Download English Version:

https://daneshyari.com/en/article/4950779

Download Persian Version:

https://daneshyari.com/article/4950779

Daneshyari.com

https://daneshyari.com/en/article/4950779
https://daneshyari.com/article/4950779
https://daneshyari.com

