
Information Processing Letters 123 (2017) 21–26

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

On approximate pattern matching with thresholds ✩

Peng Zhang a,∗,1, Mikhail J. Atallah b

a School of Computer Science, Georgia Tech, United States
b Department of Computer Science, Purdue University, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 April 2015
Received in revised form 9 January 2017
Accepted 5 March 2017
Available online 9 March 2017
Communicated by X. Wu

Keywords:
Design of algorithms
Pattern matching
Threshold
Recursion

In the traditional version of the problem of approximate pattern matching, a pattern 
symbol is considered to match a text symbol if the two symbols are equal. Such a notion 
of exact equality is not suitable for situations where the text and pattern symbols are 
imprecise, e.g., obtained from an analog source, distorted by additive noise, etc. In such 
situations it is more appropriate to consider two alphabet symbols to match even if they are 
not equal, as long as they do not differ by more than a given threshold θ . The goal is then 
to compute the number of matches of the length-M pattern with all length-M substrings of 
the length-N text, i.e., to compute a vector of N − M + 1 scores, where the ith score is the 
number of matches between the pattern and the substring that begins at text position i. 
The main result of this paper is to show that this threshold version of the problem can 
be solved by recursively solving 3 + 2 log θ instances of the traditional (i.e., zero-threshold) 
version of the problem, which is much-studied in the literature and for which there are 
many efficient (typically randomized) solutions of time complexity close to O (N log M). 
This paper’s result therefore implies the first randomized O (N log M(log θ + 1)) solution 
for the threshold version of the problem. It also implies that any future improvement 
to the traditional (zero-threshold) version of the problem automatically translates into a 
similar improvement to the arbitrary-threshold case. Furthermore, we show that the factor 
�(log θ) is tight if use our recursive framework.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Recall that, in the approximate pattern matching prob-
lem, the input is a pair of strings: a text string T = t1 · · · tN , 
and a pattern string P = p1 · · · pM , both over an alpha-

✩ Portions of this work were supported by National Science Foun-
dation Grant CPS-1329979, Qatar National Research Fund Grant NPRP 
X-063-1-014, and by sponsors of the Center for Education and Research 
in Information Assurance and Security. The statements made herein are 
solely the responsibility of the authors.

* Corresponding author.
E-mail addresses: pzhang60@gatech.edu (P. Zhang), mja@cs.purdue.edu

(M.J. Atallah).
1 The work was done while the first author was at Purdue University.

bet �. The desired output is a similarity score vector S of 
length N − M + 1 such that

S[i] =
M∑

k=1

δ(ti+k−1, pk)

for 1 ≤ i ≤ N − M + 1, where δ(x, y) is 1 if x = y and is 0
if x �= y. This problem has been widely studied in theory, 
and has a variety of applications in DNA sequence analysis, 
web search, image processing, and computer vision, etc.

The best known deterministic algorithm for this prob-
lem takes O (N

√
M log M) time [1,16]. Efficient random-

ized algorithms of time complexity close to O (N log M)

were given in [3,5]. Besides, [15] gave algorithms which 
compute each score with an ε relative error in time 

http://dx.doi.org/10.1016/j.ipl.2017.03.001
0020-0190/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2017.03.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:pzhang60@gatech.edu
mailto:mja@cs.purdue.edu
http://dx.doi.org/10.1016/j.ipl.2017.03.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2017.03.001&domain=pdf


22 P. Zhang, M.J. Atallah / Information Processing Letters 123 (2017) 21–26

O ((N/ε2) logc M) for a small constant c. The entries of S
for which the similarity score is at least M − k are known 
as k-mismatches. Finding only k-mismatches can be done 
efficiently with an O (N

√
k log k) time algorithm [2], which 

was further improved to O (N + N
√

k/ log N log k) [12]. Al-
though in the worst case k could be proportional to M , in 
practice one is often only interested in small values of k. 
There had been much prior work on this k-mismatch prob-
lem (e.g., [13,6], to mention a few). A recent refinement to 
the shift-add approach of [6] was given in [14].

In [4] a generalization of the pattern matching prob-
lem was studied, considering that the text pattern symbols 
might be imprecise if obtained from an analog source or 
distorted by additive noise, etc. They computed the score 
vector S for the case where the input also includes a 
threshold value θ whose significance is that alphabet sym-
bols whose difference does not exceed θ are considered to 
match. In other words, in the above definition of the score 
vector S , the δ function is replaced by a δθ function where 
δθ (x, y) is 1 if |x − y| ≤ θ and is 0 if |x − y| > θ . For exam-
ple, if the alphabet is � = {0, 1, 2, . . . , 9}, θ = 2, T = 6482, 
and P = 93, then S = (1, 0, 2). The algorithm given in [4]
has an O (N

√
M log M) time complexity. Unlike the situa-

tion for the classical (zero-threshold) version of the prob-
lem, randomized more efficient (e.g., close to O (N log M)) 
time bounds for this problem were not known. Such an 
efficient solution is a corollary to the main result of the 
present paper.

Another related but different variant of the pattern 
matching problem is δ-matching, studied broadly in [7–11]. 
Instead of outputting a score vector of length N − M + 1, 
δ-matching problem outputs a subset of indices Iδ = {i :
maxM

k=1

∣∣ti+k−1 − pk
∣∣ ≤ δ} where δ is a given threshold. 

Note that if we use δ as threshold in our setting, Iδ is 
exactly the subset of score vector indices without mis-
matching, that is, {i : S[i] = M}. Efficient algorithms for 
δ-matching problem are given in [7–10]. However, these 
algorithms are not applicable to the problem studied in 
this paper, since they lack the similarity scores for indices 
with mismatches.

2. This paper’s contribution

The main result of our present paper is to establish 
that any algorithm of complexity g(N, M) for the tradi-
tional (i.e., zero-threshold) version of the problem implies 
an algorithm of complexity O (g(N, M)(log θ + 1)) for the 
arbitrary-threshold version of the problem. We establish 
this by giving an algorithm that solves the with-threshold 
version of the problem using 3 + 2 log θ zero-threshold 
problem instances that have same size (i.e., N and M) as 
the with-threshold instance (the time spent on creating 
each instance is linear, hence dominated by g(N, M)).

It is easy to see that trying to process, one at a time, 
the bits of the binary representation of θ , does not work 
and leads to a dead-end. Our solution bears no resem-
blance to such an approach. A rough overview of what 
we do is as follows. We use a recursive approach where, 
after solving two judiciously defined zero-threshold in-
stances of the problem, we recurse on a problem whose 
threshold is θ/2. The recursion is on new versions of text 

and pattern, obtained from the input versions by replac-
ing symbols by other symbols, in a way that resembles 
an odd–even un-shuffle of a bucketized alphabet (hence 
some symbols of the alphabet get replaced by much larger 
ones, whereas other symbols get replaced by much smaller 
ones). The process we use for replacing a symbol i depends 
on the parity of � i

θ/2 �, and the arithmetic used in both the 
even and odd cases involves i, θ , and (for the odd case) 
max j(� j

θ/2 �) where the maximization is over all alphabet 
symbols j that occur in text or pattern. Furthermore, we 
show that the factor �(log θ) is tight if use the above re-
cursive framework.

3. The algorithm

Before stating our algorithm, we formally define the 
problem of approximate pattern matching with thresholds 
as follows.

Inputs: A text string T = t1 · · · tN , a pattern string P =
p1 · · · pM , both over a (possibly large) alphabet. A thresh-
old value θ .

Output: A vector S of length N − M + 1, where S[i] =∑M
k=1 δθ (ti+k−1, pk) and δθ (x, y) is 1 if |x − y| ≤ θ , 0 oth-

erwise.

This section gives a recursive algorithm that solves the 
problem of approximate pattern matching with thresholds 
by making use of 3 + 2 log θ instances of zero-threshold 
versions of the problem. As the zero-threshold version is 
much studied in the literature, and has efficient (typically 
randomized) algorithms for solving it, our result implies 
efficient algorithms for the threshold version of the prob-
lem.

In what follows we assume alphabet symbols and 
the threshold to be integers. There is no loss of gener-
ality in this, because otherwise they can all be “scaled 
up” to become integers without changing the result-
ing score vector. For example, if the original alphabet is 
{1.73, 2.55, 5.41, 2.17} and θ is 0.13, then after scaling 
they become {173, 255, 541, 217} and (respectively) 13.

To avoid unnecessarily cluttering the exposition, we 
present the algorithm when θ is a power of 2; there is 
no loss of generality in doing so, as the algorithm we give 
can easily be modified for the general case.

Algorithm Scores(T ,P ,θ )

Method: The algorithm is recursive, and works by making 
two calls to zero-threshold instances of the problem, fol-
lowed by a recursive call on a problem instance having a 
threshold of θ/2.

1. If θ = 1 then do the following.
(a) Let S0 be the score vector returned by Scores(T ,

P ,0).
(b) Obtain T ′ from T by replacing every occurrence of 

a symbol i in T with i + 1. Let S1 be the score 
vector returned by Scores(T ′ ,P ,0).

(c) Obtain P ′ from P by replacing every occurrence of 
a symbol i in P with i + 1. Let S2 be the score 
vector returned by Scores(T ,P ′ ,0).

(d) Return S0 + S1 + S2.



Download English Version:

https://daneshyari.com/en/article/4950781

Download Persian Version:

https://daneshyari.com/article/4950781

Daneshyari.com

https://daneshyari.com/en/article/4950781
https://daneshyari.com/article/4950781
https://daneshyari.com

