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In evolutionary biology, phylogenetic networks are constructed to represent the evolution 
of species in which reticulate events are thought to have occurred, such as recombina-
tion and hybridization. It is therefore useful to have efficiently computable metrics with 
which to systematically compare such networks. Through developing an optimal algo-
rithm to enumerate all trinets displayed by a level-1 network (a type of network that 
is slightly more general than an evolutionary tree), here we propose a cubic-time al-
gorithm to compute the trinet distance between two level-1 networks. Employing sim-
ulations, we also present a comparison between the trinet metric and the so-called 
Robinson–Foulds phylogenetic network metric restricted to level-1 networks. The algo-
rithms described in this paper have been implemented in JAVA and are freely available 
at https :/ /www.uea .ac .uk /computing /TriLoNet.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Various types of phylogenetic networks have been in-
troduced to explicitly represent the reticulate evolutionary 
history of organisms such as viruses and bacteria in which 
processes such as recombination and lateral gene transfer 
occur [1]. Essentially, such networks are binary, directed 
acyclic graphs with a single root, whose leaves correspond 
to the organisms or species in question. Here we focus on 
level-1 networks, a type of phylogenetic network that is 
slightly more general than an evolutionary tree, and closely 
related to so-called galled-trees (see, e.g. [2]). Level-1 net-
works are characterized by the property that any two cy-
cles within them are disjoint (see the next section for a 
formal definition and Fig. 1 for an example). Due to the 
availability of practical algorithms for their construction 
[3,4], level-1 networks have attracted much attention in re-
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cent years (see, e.g. [2,5–7]) and they have been used to, 
for example, represent the evolution of the fungus Fusar-
ium graminearum [1], and that of HBV [4].

A key challenge for phylogenetic networks is to quan-
tify the incongruence between two networks which repre-
sent competing evolutionary histories for a given dataset. 
Such pairs can arise, for example, when different networks 
are inferred using different methods or construction (see 
e.g. [8] for an overview of network building methods). 
In consequence, various metrics have been developed for 
comparing phylogenetic networks (cf. Chapter 6 in [1] for 
an overview). Ideally, such a metric should be efficient to 
compute since it may need to be repeatedly computed (for 
example, in simulations such as the ones that we present 
later in this paper). Moreover, it is useful if the diameter 
can be derived for the metric (i.e. the maximum value for 
the metric taken over all pairs of all possible networks) so 
that distances can be normalized.

Here we develop an efficient cubic-time algorithm to 
compute the trinet distance between two level-1 networks, 
that is, the number of trinets (i.e., networks on three taxa) 
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displayed by one but not both networks. We also give the 
diameter of this metric. The trinet metric was introduced 
in [9] and used in [4] to compare the performance of net-
work inference algorithms. Note that the trinet distance is 
closely related to the triplet distance, which is the number 
of 3-leaved trees exhibited by one but not both networks 
(see, e.g. [10]). However, in contrast to the trinet metric, 
the triplet metric is not proper in that there exist pairs 
of distinct level-1 networks whose triplet distance is zero. 
In addition to the trinet metric, other proper metrics that 
can be used for comparing level-1 networks include the 
tripartition metric [11], the path-multiplicity metric [12], 
the NNI metric [13], and the Robinson–Foulds metric [2]. 
Among these metrics, only the NNI metric was specifically 
defined for level-1 networks, while the others were intro-
duced for more general classes of networks and can be 
restricted to level-1 networks to give proper level-1 met-
rics. However, establishing the diameters for these other 
metrics on level-1 metrics appears to be a challenging 
problem, although in this paper we shall derive the diam-
eter for the restricted Robinson–Foulds metric.

In the next section we introduce some basic notation 
and state the main result: an optimal algorithm to enumer-
ate the trinets displayed by a level-1 network and a cubic-
time algorithm to compute the trinet distance between 
two level-1 networks (Theorem 1). In Section 3 we present 
some structural results concerning level-1 networks which 
we then use to prove the main result in Section 4. In 
Section 5 we present a comparative study between the 
trinet and the Robinson–Foulds metrics, in which we com-
pute some empirical distributions for randomly generated 
level-1 networks. We conclude in Section 6 with a discus-
sion of some future directions.

2. Preliminaries

Let X be a finite set of taxa with cardinality n. A rooted 
phylogenetic network (or simply a network) N on a finite 
set X is a simple, acyclic digraph with a unique root, no 
degenerate vertices (i.e., vertices with indegree one and 
outdegree one), whose leaves are bijectively labelled by the 
taxa in X . A network is binary if all non-leaf vertices have 
indegree and outdegree at most two, and all vertices with 
indegree two have outdegree one. A vertex is a tree vertex
if it has outdegree two, and a reticulation if it has indegree 
two. A network is level-k if the maximum number of retic-
ulations contained in any of its biconnected components is 
at most k. Note that a network is level-1 if it is binary and 
all of its cycles (in its underlying graph) are disjoint [1]
(see Fig. 1 for an example). All networks mentioned in this 
paper, unless stated otherwise, are level-1.

Given a network, an arc whose removal disconnects the 
network is a cut arc. If a vertex v is on a dipath from 
the root to a vertex u, then we say u is below v and 
v is above u, and write this as u � v (or u ≺ v when 
u �= v holds). The set C(v) of all taxa below a vertex v
is called the cluster of v . A common ancestor of a taxon 
subset Y is a vertex v with Y ⊆ C(v). A lowest common an-
cestor (LCA) of Y is a common ancestor of Y that is not 
above any other common ancestors of Y . A stable ancestor
of Y is a vertex contained in every dipath from the root 

Fig. 1. A level-1 phylogenetic network with leaf set X = {a, b, . . . , j} con-
taining a cycle of length five, highlighted in bold. Here we use the con-
vention that all arcs are directed away from the root vertex which is at 
the top of the network.

Fig. 2. An example of an lsa table: (i): A level-1 phylogenetic network N; 
(ii) The lsa table of N . Note that v4 is the LCA of {x, y} while we have 
lsa(x, y) = v2.

to some taxon in Y . The lowest stable ancestor (LSA) of Y
is the unique vertex lsa(Y ) such that lsa(Y ) is below ev-
ery stable ancestor of Y . Note that a LCA of Y is necessary 
below lsa(Y ) (cf. [14]). Finally, the lsa table θ of N is the 
data structure that maps each pair of district taxa x, y to 
lsa(x, y) = lsa({x, y}) (see Fig. 2 for an illustration).

A binet is a network on two taxa and a trinet is a net-
work on three taxa. Up to relabelling, there exist two types 
of binets and eight types of trinets [9], all presented in 
Fig. 3. In the following, we will use the notation in that 
figure to refer to specific trinets and binets. Binets T0(x, y)

and S0(x; y) are referred to as a cherry and a reticulate 
cherry, respectively. Note that a reticulate cherry is not 
symmetric, that is, S0(x; y) is distinct from S0(y; x).

Given a network N and a taxon subset Y = {y1, . . . , yk}
of X , the network N[Y ] = N[y1, . . . , yk] is the network ob-
tained from N by deleting all vertices and arcs that are not 
on a dipath from lsa(Y ) to some leaf in Y , and repeatedly 
suppressing degree 2 vertices and replacing parallel arcs by 
single arcs until neither operation is applicable. Let B(N)

and T (N) be the set of all binets and trinets displayed 
by N , respectively. It is known that a level-1 network N
is determined by its set T (N) of trinets [9].

The trinet distance dt(N, N ′) between two networks N
and N ′ on the set X is the number of trinets contained in 
the symmetric difference T (N)�T (N ′) of the sets T (N)

and T (N ′). The distance dt is a metric on the set of level-1 
networks [9]. Moreover,

dt(N, N ′) ≤ 2

(
n

3

)
, (1)
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