
Information Processing Letters 123 (2017) 47–50

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Composing ordered sequential consistency

Kfir Lev-Ari a,∗, Edward Bortnikov b, Idit Keidar a,b, Alexander Shraer
a Viterbi Department of Electrical Engineering, Technion, Haifa, Israel
b Yahoo Research, Haifa, Israel

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 November 2016
Accepted 20 March 2017
Available online 22 March 2017
Communicated by Gregory Chockler

Keywords:
Composability
Consistency
Distributed systems

We define ordered sequential consistency (OSC), a generic criterion for concurrent objects. 
We show that OSC encompasses a range of criteria, from sequential consistency to 
linearizability, and captures the typical behavior of real-world coordination services, such 
as ZooKeeper. A straightforward composition of OSC objects is not necessarily OSC, e.g., 
a composition of sequentially consistent objects is not sequentially consistent. We define 
a global property we call leading ordered operations, and prove that it enables correct OSC 
composition.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this work we define a generic correctness criterion 
named Ordered Sequential Consistency (OSC), which captures 
a range of criteria, from sequential consistency [1] to lin-
earizability [2].

We use OSC to capture the semantics of coordination 
services such as ZooKeeper [3]. These coordination ser-
vices provide so-called “strong consistency” for updates 
and some weaker semantics for reads. They are replicated 
for high-availability, and each client submits requests to 
one of the replicas. Reads are not atomic so that they can 
be served fast, i.e., locally by any of the replicas, whereas 
update requests are serialized via a quorum-based proto-
col based on Paxos [4]. Since reads are served locally, they 
can be somewhat stale but nevertheless represent a valid 
system state.

In the literature, these services’ guarantees are de-
scribed as atomic writes and FIFO ordered operations for 
each client [3]. This definition is not tight in two ways: 
(1) linearizability of updates has no meaning when no op-
eration reads the written values; and (2) this definition 

* Corresponding author.
E-mail address: kfirla@campus.technion.ac.il (K. Lev-Ari).

allows read operations to read from a future write, which 
obviously does not occur in any real-world service. A spe-
cial case of OSC, which we call OSC(U ), captures the actual 
guarantees of existing coordination services.

Although supporting OSC(U ) semantics instead of atom-
icity of all operations enables fast local reads, this makes 
services non-composable: correct OSC(U ) coordination ser-
vices may fail to provide the same level of consistency 
when combined [5]. Intuitively, the problem arises because 
OSC(U ), similarly to sequential consistency [1], allows sub-
set of operations to occur “in the past”, which can intro-
duce cyclic dependencies.

In a companion systems paper [5] we present ZooNet, 
a system for modular composition of coordination services, 
which addresses this challenge: Consistency is achieved on 
the client side by judiciously adding synchronization re-
quests called leading ordered operations. The key idea is to 
place a “barrier” that limits how far in the past reads can 
be served from. ZooNet does so by adding a “leading” up-
date request prior to a read request whenever the read is 
addressed to a different service than the previous one ac-
cessed by the same client. We provide here the theoretical 
underpinnings for the algorithm implemented in ZooNet.

Proving the correctness of ZooNet is made possible by 
the OSC definition that we present in this paper. Interest-
ingly, Vitenberg and Friedman [6] showed that sequential 

http://dx.doi.org/10.1016/j.ipl.2017.03.004
0020-0190/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2017.03.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:kfirla@campus.technion.ac.il
http://dx.doi.org/10.1016/j.ipl.2017.03.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2017.03.004&domain=pdf


48 K. Lev-Ari et al. / Information Processing Letters 123 (2017) 47–50

consistency, when combined with any local (i.e., compos-
able) property continues to be non-composable. Our ap-
proach circumvents this impossibility result since having 
leading ordered operations is not a local property.

2. Model and notation

We use a standard shared memory execution model [2], 
where a set φ of sequential processes access shared objects
from some set X. An object has a name label, a value, and 
a set of operations used for manipulating and reading its 
value. An operation’s execution is delimited by two events, 
invoke and response.

A history σ is a sequence of operation invoke and re-
sponse events. An invoke event of operation op is denoted 
iop , and the matching response event is denoted rop . For 
two events e1, e2 ∈ σ , we denote e1 <σ e2 if e1 precedes 
e2 in σ , and e1 ≤σ e2 if e1 = e2 or e1 <σ e2. For two oper-
ations op and op′ in σ , op precedes op′ , denoted op <σ op′ , 
if rop <σ iop′ , and op ≤σ op′ if op = op′ or op <σ op′ . Two 
operations are concurrent if neither precedes the other.

For a history σ , complete(σ ) is the sequence ob-
tained by removing all operations with no response events 
from σ . A history is sequential if it begins with an invoke 
event and consists of an alternating sequence of invoke 
and response events, s.t. each invoke is followed by the 
matching response.

For p ∈ φ, the process subhistory σ |p of a history σ is 
the subsequence of σ consisting of events of process p. 
The object subhistory σx for an object x ∈ X is similarly de-
fined. A history σ is well-formed if for each process p ∈ φ, 
σ |p is sequential. For the rest of our discussion, we assume 
that all histories are well-formed. The order of operations 
in σ |p is called the process order of p.

For the sake of our analysis, we assume that each sub-
history σx starts with a dummy initialization of x that 
updates it to a dedicated initial value v0, denoted dix(v0), 
and that there are no concurrent operations with dix(v0)

in σx .
We refer to an operation that changes the object’s value 

as an update operation. The sequential specification of an ob-
ject x is a set of allowed sequential histories in which all 
events are associated with x. For example, the sequential 
specification of a read-write object is the set of sequential 
histories in which each read operation returns the value 
written by the last update operation that precedes it.

3. Ordered sequential consistency

Definition 1 (OSC(A)). A history σ is OSC w.r.t. a subset A of 
the objects’ operations if there exists a history σ ′ that can 
be created by adding zero or more response events to σ , 
and there is a sequential permutation π of complete(σ ′), 
satisfying the following:

OSC1 (sequential specification): ∀x ∈ X, πx belongs to 
the sequential specification of x.
OSC2 (process order): For two operations o and o′ , if 
∃p ∈ φ : o <σ |p o′ then o <π o′ .

OSC3 (A-real-time order): ∀x ∈ X, for an operation o ∈
A and an operation o′ (not necessarily in A) s.t. o, o′ ∈
σx , if o′ <σ o then o′ <π o.

Such π is called a serialization of σ . An object is OSC(A) 
if all of its histories are OSC(A).

We assume that ∀x ∈ X, dix(v0) ∈ A. Linearizability and 
sequential consistency are both special cases of OSC(A): 
(1) we get linearizability using A that consist of all of the 
objects’ operations; and (2) we get sequential consistency 
with A that consists only of dummy initialization opera-
tions, which means that there is no operation that pre-
cedes an A-operation, i.e., OSC3 is null, and we left with 
the sequential specification and process order of an object.

If A consists of the objects’ update operations, de-
noted U , then OSC(U ) captures the semantics of coor-
dination services: (1) updates are globally ordered (by 
OSC3); and (2) all operations see some prefix of that or-
der (by OSC3), while respecting each client process order 
(by OSC2).

4. OSC(A) composability via leading A-operations

In this section we show that a history σ of OSC(A) 
objects satisfies OSC(A), if σ has leading ordered A-opera-
tions. Generally, we prove the composition by ordering 
every A-operation oA on object x, according to the first 
event e ∈ σ s.t. e ≤σ roA and ioA <πx e. Then, we extend 
that order to a total order on all operations, by placing ev-
ery non-A-operation after the A-operation that precedes 
it in their object’s serialization. Finally, we show that if 
σ has leading ordered A-operations, then the total order 
satisfies OSC(A). Intuitively, we can think of the leading 
A-operations as a barrier for the non-A-operations, that 
maintains the total order between objects.

Given a history σ of OSC(A) objects, and a set of seri-
alizations � = {πx}x∈X of {σx}x∈X, we define a strict total 
order on all operations in �. We refer to an operation 
o ∈ A as an A-operation, and define the future set of an 
A-operation as follows:

Definition 2 (A-operation future set). Given a history σ of 
OSC(A) objects, an object x ∈ σ , a serialization πx of σx , 
and an A-operation oA ∈ σx , the future set of oA in πx is 
F πx
σ (oA) � {o ∈ πx|oA ≤πx o}.

We now define an A-operation’s first response event to 
be the earliest response event of an operation in its future 
set.

Definition 3 (First response event). Given a history σ of 
OSC(A) objects, an object x ∈ σ , a serialization πx of σx , 
and an A-operation oA ∈ πx , the first response event of oA in 
πx , denoted f rπx

σ (oA), is the earliest response event in σ
of an operation in F πx

σ (oA).

Note that it is possible that f rπx
σ (oA) is oA ’s re-

sponse event. We make two observations regarding first 
responses:



Download English Version:

https://daneshyari.com/en/article/4950785

Download Persian Version:

https://daneshyari.com/article/4950785

Daneshyari.com

https://daneshyari.com/en/article/4950785
https://daneshyari.com/article/4950785
https://daneshyari.com

