
Information Processing Letters 129 (2018) 5–10

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Fast batch modular exponentiation with 

common-multiplicand multiplication

Jungjoo Seo, Kunsoo Park ∗,1

Department of Computer Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 June 2017
Received in revised form 2 September 2017
Accepted 4 September 2017
Available online 7 September 2017
Communicated by K. Chao

Keywords:
Algorithm
Cryptography
Modular exponentiation
Common-multiplicand multiplication

We present an efficient algorithm for batch modular exponentiation which improves upon 
the previous generalized intersection method with respect to the cost of multiplications. 
The improvement is achieved by adopting an extended common-multiplicand multiplica-
tion technique that efficiently computes more than two multiplications at once. Our 
algorithm shows a better time-memory tradeoff compared to the previous generalized 
intersection method. We analyze the cost of multiplications and storage requirement, 
and show how to choose optimal algorithm parameters that minimize the cost of 
multiplications.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Modular exponentiation is a fundamental operation in 
the field of public-key cryptography for encryption and 
signing features. The efficiency of modular exponentiation 
is increasingly important because the required key size has 
grown to ensure the cryptographic security levels. It is also 
important because exponentiation is performed in devices 
with weak computing power as the internet of things be-
comes ubiquitous.

In a cryptographic application that requires digital sig-
natures [4,7] of multiple messages simultaneously, an ef-
ficient batch exponentiation algorithm is required. As a 
solution to the batch exponentiation problem, the gener-
alized intersection method was proposed by M’Raïhi and 
Nacacche [6]. This method takes advantage of the fact that 
intersecting exponents leads to a less number of multipli-

* Corresponding author.
E-mail addresses: jjseo@theory.snu.ac.kr (J. Seo), 

kpark@theory.snu.ac.kr (K. Park).
1 Supported by the Bio & Medical Technology Development Pro-

gram of the NRF funded by the Korean government, MSIP (NRF-
2014M3C9A3063541).

cations. Chung et al. [1] proposed a decremental combina-
tion strategy that removes the overlapping multiplications 
in the combination stage of the generalized intersection 
method. They also pointed out that various time-memory 
tradeoffs can be obtained by grouping exponents.

We propose a k-way batch exponentiation algorithm 
that improves the evaluation stage of the generalized 
intersection method with exponent-grouping. Our algo-
rithm divides exponents into several groups and produces 
many common-multiplicand multiplications in the evalu-
ation stage. To handle multiple multiplications at once, 
the common-multiplicand multiplication technique is ex-
tended to compute more than two multiplications. This 
approach significantly enhances the performance of the 
evaluation stage and the whole procedure achieves a bet-
ter time-memory tradeoff compared to Chung et al.’s.

2. Generalized intersection method

Throughout the paper, the i-th element in an array A is 
denoted by Ai . The i-th bit of an integer a = ∑

i=0 a[i]2i

is denoted by a[i]. For binary operations, let ∧, ∨ and 
⊕ denote the bitwise AND, OR and XOR, respectively. Let 
d = (d[n]d[n − 1]...d[1])2 be an n-bit integer and A =

http://dx.doi.org/10.1016/j.ipl.2017.09.003
0020-0190/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2017.09.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:jjseo@theory.snu.ac.kr
mailto:kpark@theory.snu.ac.kr
http://dx.doi.org/10.1016/j.ipl.2017.09.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2017.09.003&domain=pdf


6 J. Seo, K. Park / Information Processing Letters 129 (2018) 5–10

Algorithm Part

Input: n l-bit exponents X = {x1, x2, ..., xn}
Output: Position array P
1: P ← 0 for 0 ≤ i < l
2: for d ← 1 to 2n − 1 do
3: c ← ∧

i:d[i]=1 xi ⊕ (∧
i:d[i]=1 xi ∧ ∨

i:d[i]=0 xi
)

4: for i ← 0 to l − 1 do
5: if c[i] = 1 then Pi ← d

Fig. 1. Algorithm for exponent partitioning.

Table 1
Example of exponent partitioning.

Index 7 6 5 4 3 2 1 0

x1 1 0 1 0 0 1 1 1
x2 1 0 1 0 1 1 1 1
x3 1 1 1 0 0 0 1 1
C001 0 0 0 0 0 0 0 0
C010 0 0 0 0 1 0 0 0
C011 0 0 0 0 0 1 0 0
C100 0 1 0 0 0 0 0 0
C101 0 0 0 0 0 0 0 0
C110 0 0 0 0 0 0 0 0
C111 1 0 1 0 0 0 1 1
P 7 4 7 0 2 3 7 7

{a1, a2, ..., an} be an array of n integers. Given a bit b, ∧
i:d[i]=b ai denotes the result of bitwise AND of all ai ’s 

such that d[i] = b. 
∨

i:d[i]=b ai is defined in the same way. 
Also the exponents are assumed to be randomly chosen 
non-negative integers which means that each bit in an ex-
ponent is 1 with probability 1

2 .
In a batch modular exponentiation, given g , p, and n

l-bit exponents X = {x1, x2, ..., xn}, we want to compute 
R = {Ri = gxi mod p | 1 ≤ i ≤ n} simultaneously. We intro-
duce three stages of the generalized intersection method 
with the decremental combination strategy. For the picto-
rial description, we refer readers to [1].

2.1. Exponent partitioning

In the generalized intersection method, the n exponents 
are partitioned to 2n − 1 disjoint cells by the following for-
mula:

Cd =
∧

i:d[i]=1

xi ⊕
⎛
⎝ ∧

i:d[i]=1

xi ∧
∨

i:d[i]=0

xi

⎞
⎠

where 1 ≤ d < 2n and d = (d[n]d[n − 1]...d[1])2 for d[i] ∈
{0, 1}. Because of the bitwise mutual exclusiveness of the 
disjoint cells, the values can be represented as a position 
array P of length l where Pi = d if the i-th bit of Cd is 1, 
and Pi = 0 otherwise. The position array P can be com-
puted by Algorithm Part in Fig. 1.

Example 1. Let us consider a set X of three exponents x1 =
10100111, x2 = 10101111 and x3 = 11100011 with n = 3
and l = 8. The disjoint cells and the position array for X
are shown in Table 1. The bit at position 6 is set in C100
since C100 is composed of bits that are set in x3, but not 
in x1 and x2. Likewise, the bit at position 2 is set in C011, 
because bits in C011 are set in both x1 and x2, but not in 

Algorithm Eval

Input: g , p, position array P
Output: Gd = gCd mod p for 0 < d < 2n

1: Gi ← 1 for 0 < i < 2n

2: for i ← 0 to l − 1 do
3: if Pi 	= 0 then
4: G Pi ← G Pi × g mod p

5: g ← g × g mod p

Fig. 2. Algorithm for evaluation.

Algorithm Comb

Input: n, p, Gd = gCd mod p for 0 < d < 2n

Output: Ri = gxi mod p for 1 ≤ i ≤ n
1: for i ← n downto 1 do
2: Ri ← G2i−1

3: for j ← 1 to 2i−1 − 1 do
4: Ri ← Ri × G2i−1+ j mod p
5: G j ← G j × G2i−1+ j mod p

Fig. 3. Algorithm for decremental combination.

x3. As Table 1 shows, there is at most one cell for each bit 
column that is set to 1. For instance, the bit at position 5 
is set to 1 only in C111.

2.2. Evaluation

With the position array P , we can compute Gd = gCd =∏
i:Pi=d g2i

mod p by the repeated squaring method as de-
scribed in Algorithm Eval of Fig. 2. All Gd ’s are initialized 
to 1. At the i-th iteration, we test if Pi is not 0. If so, g2i

is 
multiplied to G Pi , since Pi contains the index of the parti-

tioned cell that has 1 for its i-th bit. In Example 1, g22
is 

multiplied to G011 and squared to g23
.

2.3. Decremental combination

Each value Ri = gxi = ∏
d:d[i]=1 gCd mod p is computed 

by combining the output values of the evaluation stage. 
To avoid redundant multiplications, Chung et al. [1] de-
vised a decremental combination method where the final 
results are calculated from Rn down to R1 (or any arbi-
trary order) as in Algorithm Comb of Fig. 3. For computing 
Ri , we initialize Ri to G2i−1 , and multiply each evaluated 
value G2i−1+ j for 1 ≤ j < 2i−1 to Ri and G j . After Ri is 
computed, the set of merged values Gd for 1 ≤ d < 2i−1

is equivalent to the output of the evaluation stage for the 
exponent set {x1, ..., xi−1}.

2.4. Performance

The expected number of multiplications of the eval-

uation stage in Algorithm Eval is 
(
2n − 1

)(
l

2n − 1
)

and 
the number of squares is l − 1. Since the number of 
multiplications of the combination stage in Algorithm
Comb is 2 

∑n
i=1

(
2i−1 − 1

)
, the total cost is given by (

2 − 1
2n

)
l + 2n − 2n − 2. The amount of required mem-

ory in bits to store P and the evaluated values are nl



Download English Version:

https://daneshyari.com/en/article/4950792

Download Persian Version:

https://daneshyari.com/article/4950792

Daneshyari.com

https://daneshyari.com/en/article/4950792
https://daneshyari.com/article/4950792
https://daneshyari.com

