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In an instance of the (directed) Max Leaf Tree (MLT) problem we are given a vertex-
weighted (di)graph G(V , E, w) and the goal is to compute a subtree with maximum weight 
on the leaves. The weighted Connected Max Cut (CMC) problem takes in an undirected 
edge-weighted graph G(V , E, w) and seeks a subset S ⊆ V such that the induced graph 
G[S] is connected and 

∑
e∈δ(S) w(e) is maximized.

We obtain a constant approximation algorithm for MLT when the weights are chosen from 
{0, 1}, which in turn implies a �(1/ logn) approximation for the general case. We show 
that the MLT and CMC problems are related and use the algorithm for MLT to improve the 
factor for CMC from �(1/ log2 n) (Hajiaghayi et al., ESA 2015) to �(1/ logn).

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Given a vertex-weighted graph G = (V , E, w), the Max 
Leaf Tree problem is to find a subtree T such that the total 
weight of the leaves of T is maximized. The closely related 
Maximum Leaf Spanning Tree problem seeks to find a span-
ning tree T of G that maximizes the sum of weights on the 
leaves of T . The Maximum Leaf Spanning Tree problem on 
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unweighted graphs has been very well studied and con-
stant factor approximation algorithms are known both for 
undirected [5,8,10,11,13] as well as directed graphs [3,4].

In the unweighted case, it is easy to observe that any 
subtree T can be augmented to a spanning tree T ′ with-
out decreasing the number of leaves. Consequently, on un-
weighted graphs – both undirected and directed (in this 
case, we assume that all the nodes have a directed path 
from the root), the Max Leaf Tree problem is equivalent 
to the Maximum Leaf Spanning Tree problem. However, 
the two problems differ significantly in their weighted 
versions. In this paper, we study the approximability of 
the weighted Max Leaf Tree problem on both directed and 
undirected graphs.

Hajiaghayi et al. [6] initiated the study of the Con-
nected Submodular Maximization problem: Given a graph 
G = (V , E) and a non-negative submodular set function 
f : 2V → R

+ ∪ {0}, find a subset S of vertices that maxi-
mizes f (S) such that the induced graph G[S] is connected. 
It can be readily observed that the weighted Max Leaf Tree

http://dx.doi.org/10.1016/j.ipl.2017.06.002
0020-0190/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2017.06.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:rajivg@camden.rutgers.edu
mailto:hajiagha@cs.umd.edu
mailto:guyk@camden.rutgers.edu
mailto:mpurohit@google.com
mailto:sarpatwa@us.ibm.com
http://dx.doi.org/10.1016/j.ipl.2017.06.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2017.06.002&domain=pdf


32 R. Gandhi et al. / Information Processing Letters 129 (2018) 31–34

problem is a special case of the Connected Submodular 
Maximization problem where the submodular function is 
f (S) = ∑

u∈N(S) w(u) where N(S) refers to the set of all 
vertices that are not in S but have neighbors in S . An-
other important special case of the Connected Submodu-
lar Maximization problem is the Connected Maximum Cut 
(C MC ) problem: Given an edge-weighted undirected graph 
G = (V , E, w) find a set S ⊆ V that maximizes the total 
weight of edges in the cut δ(S, V \ S) such that the induced 
graph G[S] is connected. Hajiaghayi et al. [6] obtained the 
first �( 1

log2 n
) approximation algorithm for the Connected 

Maximum Cut problem on weighted graphs.

1.1. Contribution and techniques

Our key results can be summarized as follows.

1. We obtain the first �( 1
log n ) approximation algorithm 

for the Max Leaf Tree problem with general weights on 
directed and undirected graphs.

2. We show that an α-approximation algorithm for 
the weighted Max Leaf Tree problem leads to an 
�(α)-approximation algorithm for the Connected
Maximum Cut problem on general weighted graphs. 
Combined with the previous result, we obtain an 
�( 1

log n )-approximation, thus improving upon the

�( 1
log2 n

)-approximation obtained by Hajiaghayi et al. 
[6].

1.2. Related work

Max Leaf Spanning Tree is a classical problem that has 
been very well-studied from the perspective of approxi-
mation algorithms [5,8,10,11,13] as well as fixed param-
eterized tractability [1,3]. As observed by Drescher and 
Vetta [4], the weighted Max Leaf Spanning Tree problem is 
as hard as the Independent Set problem and hence cannot 
be approximated within a factor of �( 1

n1−ε ) unless P=NP. 
For unweighted directed graphs, Drescher and Vetta [4] ob-
tained an �( 1√

O P T
) approximation for the Max Leaf Span-

ning Tree problem. Daligault and Thomassé [3] discovered 
the first constant approximation algorithm for the same.

Hajiaghayi et al. [6] introduced the Connected Max-
imum Cut problem and gave an �( 1

log n ) approximation 
algorithm on unweighted graphs as well as an �( 1

log2 n
)

approximation algorithm on general weighted graphs. Lee, 
Nagarajan and Shen [9] studied a generalization of the 
connected maximum cut where connectivity and cut are 
defined by different graphs. Optimization of submodular 
functions over graphs subject to a connectivity constraint 
has been well studied in different contexts especially for 
monotone submodular functions [2,7].

2. Preliminaries

Problem definition (Directed) Weighted Maximum Leaf Tree : 
Given a graph G = (V , E) and a weight function w : V →
R

+ , find a subtree T that maximizes 
∑

v∈L(T ) w(v) where 
L(T ) denotes the set of leaves of the tree T . In the di-
rected version, we are also given a root vertex r and the 

goal is to find an out-tree T rooted at r that maximizes ∑
v∈L(T ) w(v).

Problem definition Connected Max Cut : Given a graph G =
(V , E) and a weight function w : E → R

+ , find a subset 
S ⊂ V that maximizes 

∑
e∈δ(S,V \S) w(e) such that the sub-

graph induced by S is connected.

3. Approximation algorithms for general graphs

In this section, we consider the Weighted Maximum Leaf 
Tree on directed graphs and provide the first �( 1

log n ) ap-
proximation algorithm. Naturally all our results are appli-
cable for undirected graphs as well. Our approach is to 
first reduce the problem to an instance of the unweighted
maximum leaf tree problem in two stages and then use a 
constant factor approximation algorithm for the same.

3.1. Stage 1: reduction to binary weighted max leaf tree

We partition the vertices in V into log2 n classes based 
on their weight as follows. Let O P T denote the total 
weight of leaves of an optimal weighted Max Leaf Tree and 
let wmax = maxv∈V w(v), wmin = minv∈V |w(v)	=0 w(v) de-
note the weights of the heaviest and lightest (non-zero) 
vertices in V respectively. Without loss of generality, we 
can assume that O P T ≥ wmax and hence we reset the 
weights of edges whose weights are less than wmax

2n to 
0. This alteration modifies O P T by at most an 1/2 frac-
tion and we can now assume that wmin > wmax

2n . We define 
thresholds τ0 = wmax

2n and τi = τ02i for i ∈ [log2 2n]. The 
vertices in V are grouped into O (log n) classes using these 
thresholds as follows - let V i = {v ∈ V |τi−1 < w(v) ≤ τi}.

Let O denote an optimal solution for the Max Leaf Tree
problem and let O P Ti = ∑

v∈V i∩L(O ) w(v) denote the con-
tribution of vertices from V i to the optimal solution. Let 
i∗ = arg maxi∈[log2 2n] O P Ti denote the vertex class that has 
the highest contribution. We now set w ′(v) = 0 for all 
v /∈ V i∗ and set w ′(v) = 1 for all v ∈ V i∗ to obtain a new 
instance I ′ of the Max Leaf Tree problem with only {0, 1}
weights.

Lemma 3.1. If there exists an α-approximation algorithm for 
the Max Leaf Tree problem with {0, 1} weights, then there ex-
ists an �( α

log n )-approximation algorithm for the Max Leaf Tree 
problem with general weight functions.

Proof. Given an instance I =< G, w > of the general 
weighted Max Leaf Tree problem, we obtain an instance 
I ′ =< G, w ′ > of the Max Leaf Tree problem with {0, 1}
weights using the procedure described above. By construc-
tion, we have that O P T (I ′) ≥ O P Ti∗

τi∗ ≥ O P T
τi∗ log2 2n .

Let T be an α-approximate solution for the instance I ′ . 
We now observe that the tree T is an �( α

log n )-approximate 
solution for the original instance I as well.

w(L(T )) ≥ τi∗−1 w ′(L(T )) ≥ τi∗−1αO P T (I ′)

≥ τi∗−1αO P T

τi∗ log2 2n
≥ αO P T

2 log2 2n
�
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