
Information Processing Letters 129 (2018) 44–52

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Feature weighting as a tool for unsupervised feature selection

Deepak Panday a,∗, Renato Cordeiro de Amorim b, Peter Lane a

a School of Computer Science, University of Hertfordshire, College Lane AL10 9AB, UK
b School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 February 2017
Received in revised form 8 September 2017
Accepted 15 September 2017
Available online 21 September 2017
Communicated by Jef Wijsen

Keywords:
Feature selection
Clustering
Algorithms

Feature selection is a popular data pre-processing step. The aim is to remove some of the
features in a data set with minimum information loss, leading to a number of benefits
including faster running time and easier data visualisation. In this paper we introduce
two unsupervised feature selection algorithms. These make use of a cluster-dependent
feature-weighting mechanism reflecting the within-cluster degree of relevance of a given
feature. Those features with a relatively low weight are removed from the data set. We
compare our algorithms to two other popular alternatives using a number of experiments
on both synthetic and real-world data sets, with and without added noisy features. These
experiments demonstrate our algorithms clearly outperform the alternatives.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Dimensionality reduction is a common pre-processing
step in data analysis. There are different reasons for this,
including: (i) it may help save processing time when run-
ning a machine learning algorithm; (ii) a data set would
require less space to be saved in a hard disk, or loaded
into the main memory of a computer; (iii) it may allow the
creation of more meaningful visualisation aids; (iv) it may
reduce issues raised by the curse of dimensionality [1–3].

Generally speaking, there are two main classes of meth-
ods for dimensionality reduction: feature selection and
feature extraction. Methods applying feature selection at-
tempt to find the smallest subset of relevant features, ac-
cording to a given criterion. Feature selection methods do
not alter the features themselves, preserving their origi-
nal meaning to the user. Methods applying feature extrac-
tion attempt to reduce the dimensionality of data sets by
combining features. Such methods do attempt to minimise

* Corresponding author.
E-mail addresses: d.panday@herts.ac.uk (D. Panday),

r.amorim@essex.ac.uk (R. Cordeiro de Amorim), p.c.lane@herts.ac.uk
(P. Lane).

information loss, however, the original features and their
meaning to the user are usually lost.

Feature weighting can be seen as a generalisation of
feature selection. Consider a data set Y containing n en-
tities yi , each described over the same set of features
V = {v1, v2, ..., vm}. In this scenario a feature weighting
algorithm will attempt to assign a weight w v to each fea-
ture v ∈ V , usually in the interval [0, 1]. The weight w v

reflects the degree of relevance of v to the particular prob-
lem at hand. Feature selection algorithms substitute the
[0, 1] interval by the constraint w v ∈ {0, 1} for each v ∈ V .
If w v = 1, v is placed in the subset of features that have
been selected, and discarded otherwise.

Clustering algorithms employ unsupervised learning to
partition a data set Y into K clusters S = {S1, S2, ..., S K },
according to some notion of similarity. This means they
are capable of assigning an entity yi to a particular cluster
Sk without requiring labelled data to learn from. The main
objective of this type of algorithm is to generate a clus-
tering S in which there is homogeneity within clusters,
but heterogeneity between clusters. Clustering algorithms
have a long history (see for instance [4,5] and references
therein), and they can be generally divided into two main
classes: hierarchical and partitional algorithms. The latter

https://doi.org/10.1016/j.ipl.2017.09.005
0020-0190/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.ipl.2017.09.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:d.panday@herts.ac.uk
mailto:r.amorim@essex.ac.uk
mailto:p.c.lane@herts.ac.uk
https://doi.org/10.1016/j.ipl.2017.09.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2017.09.005&domain=pdf

D. Panday et al. / Information Processing Letters 129 (2018) 44–52 45

includes algorithms generating a set of disjoint clusters, so
that Sk ∩ S j = ∅ for k, j = 1, 2, ..., K and k �= j. Hierarchical
clustering algorithms generate a clustering S and provide
information regarding the relationships between the clus-
ters themselves, at a usually higher computational cost.
These tree-like relationships can be easily visualised with
a dendrogram.

Here, we are particularly interested in partitional clus-
tering algorithms. Recent developments in this field have
led to various partitional clustering algorithms capable of
assigning feature weights (see for instance [6] and refer-
ences therein). These algorithms model the relevance of a
feature v using a feature weight w v . This fits well with
the intuitive idea that even among relevant features there
may be different degrees of relevance. However, they may
be powerless in situations in which a user actually needs
to reduce the dimensionality of a data set. This is because
an irrelevant feature is usually assigned a very low weight,
but not zero. The weight tends to be low enough for the
feature to have a meaningless contribution to the clus-
tering, but high enough for the feature to still be used
in computations. In other words, if one needs to reduce
the amount of space a data set takes, or if one intends
to apply a different machine learning algorithm (one that
does not support feature weights) after the clustering, fea-
ture weighting may not be the most appropriate solu-
tion.

In this paper we address the problem above by devising
methods capable of taking the granularity given by fea-
ture weights, and generating a subset of selected features.
That is, our feature selection methods are an extension of
feature weighting. We have divided this paper into six sec-
tions. Section 2 sets the foundation by presenting related
work. Section 3 introduces our new methods for unsuper-
vised feature selection. We compare our methods to two
popular unsupervised feature selection algorithms: feature
selection with feature similarity [7] and multi-cluster fea-
ture selection [8]. Details of our settings and experiments
can be found in Sections 4 and 5, respectively. Section 6
concludes our paper.

2. Related work

This section describes the work that is directly related
to our paper. We begin by discussing clustering, including
clustering algorithms that are capable of generating fea-
ture weights. In the following subsection we describe some
popular unsupervised feature selection algorithms. In the
following sections we use these algorithms for comparison.

2.1. Clustering and feature weighting

Clustering algorithms follow the unsupervised learning
framework, and thus do not require any labelled samples
for learning. The k-means algorithm [9,10] is arguably the
most popular partitional clustering algorithm [4,5,11]. It
aims to partition a data set Y containing n entities yi into
K clusters S = {S1, S2, ..., S K }, so that

∑K
k=1 |Sk| = n and

Sk ∩ S j = ∅, for k, j = 1, 2, ..., K and k �= j. For each Sk ∈ S ,
k-means generates a centroid ck ∈ C , where C is the set of
all centroids. This ck can be used to describe the general

characteristics of the entities assigned to a cluster Sk , and
it is often called the prototype of Sk . K -means generates a
clustering S by minimising

W (S, C) =
K∑

k=1

∑
yi∈Sk

∑
v∈V

(yiv − ckv)2, (1)

where V is the set of features, yiv and ckv are the vth

coordinates of yi and ck , respectively.
Since (1) applies the squared Euclidean distance be-

tween entities and respective centroids, we can set ckv =
|Sk|−1 ∑

yi∈Sk
yiv . In other words, the centroid ck is the

component-wise centre of yi ∈ Sk . K-means minimises (1)
using three straightforward steps: (i) randomly select K
entities of Y , and copy their values to the initial centroids
c1, c2, ..., cK ; (ii) for each entity yi ∈ Y find ck , the nearest
centroid to yi , and assign yi to Sk; (iii) update each cen-
troid ck ∈ C to the component-wise centre of yi ∈ Sk . Steps
(ii) and (iii) are repeated until convergence.

Very much like any other machine learning algorithm,
k-means is not without weaknesses. Among these: (i) it
requires the number of clusters, K , to be known before-
hand; (ii) the minimisation of (1) may get trapped in local
minima; (iii) the final clustering depends heavily on the
initial centroids, usually chosen at random; (iv) the algo-
rithm is biased towards spherical clusters (v) every feature
is treated equally, regardless of its actual relevance.

Intelligent Minkowski k-means (imwk-means) [12] has
been designed to address some of the above. This algo-
rithm calculates distances using a weighted version of the
Minkowski distance.

dp(yi, ck) =
∑
v∈V

w p
kv |yiv − ckv |p, (2)

where p is a user-defined Minkowski exponent. The rea-
son for the use of (2) is twofold. First, any distance mea-
sure will introduce a shape bias to clusters. By using the
Minkowski distance one can set this bias to shapes other
than spherical. Second, we can use wkv to change the
contribution v makes to the clustering. The general idea
is that wkv reflects the relevance of v at cluster Sk . The
above leads to the criterion

W (S, C, w) =
K∑

k=1

∑
yi∈Sk

∑
v∈V

w p
kv |yiv − ckv |p, (3)

where wkv is inversely proportional to the dispersion of
yiv ∈ Sk . This follows the intuitive idea that features with
a relatively high dispersion should have lower weight than
that of features with a relatively low dispersion. We cal-
culate the within cluster dispersion of a feature v ∈ V ,
Dkv = ∑

i∈Sk
|yiv − ckv |p and the weight itself can be set

to

wkv =
[∑

u∈V

[
Dkv

Dku

] 1
p−1

]−1

. (4)

The imwk-means algorithm makes use of a Minkowski
based version of the Anomalous Pattern method present

Download English Version:

https://daneshyari.com/en/article/4950799

Download Persian Version:

https://daneshyari.com/article/4950799

Daneshyari.com

https://daneshyari.com/en/article/4950799
https://daneshyari.com/article/4950799
https://daneshyari.com

