Contents lists available at ScienceDirect

Information Processing Letters

Deterministic improved round-trip spanners

Chun Jiang Zhu^{a,b,*}, Kam-Yiu Lam^b

^a Research Department, Wisers Information Limited, Hong Kong, China ^b Department of Computer Science, City University of Hong Kong, Hong Kong, China

ARTICLE INFO

Article history: Received 24 December 2016 Received in revised form 11 August 2017 Accepted 21 September 2017 Available online 25 September 2017 Communicated by Tsan-sheng Hsu

Keywords: Graph algorithms Graph spanners Round-trip spanners Deterministic algorithms Shortest distances

1. Introduction

Sparse spanners of undirected graphs, since they were introduced in 1989 [12], have received considerable research in the theory community. A sparse spanner of an undirected graph approximates distances in the graph such that the distance between any pair of vertices in the spanner is no larger than k times of that in the graph, and kis called the stretch factor. It is well known that for any *n*-vertex graph, there exists a spanner of stretch 2k - 1and size (the number of edges) $O(n^{1+1/k})$. This is optimal if we believe the Erdos's Conjecture [10]. See [3,15] for the concrete constructions. A lot of research efforts were then devoted to the additive spanners, where the distance between any vertex pair is no larger by an additive term β instead of a multiplicative factor. Here the spanner is called a $+\beta$ -spanner. See [2,4,17,5] for the different constructions of +2-, +6-, +4-spanners of size $O(n^{3/2})$, $O(n^{4/3})$, $O(n^{7/5})$ respectively. Abbound et al. [1] showed

Corresponding author. E-mail addresses: chunjizhu2-c@my.cityu.edu.hk (C.J. Zhu), cskylam@cityu.edu.hk (K.-Y. Lam).

https://doi.org/10.1016/j.ipl.2017.09.008 0020-0190/© 2017 Elsevier B.V. All rights reserved.

ABSTRACT

In this paper, we study the deterministic construction of round-trip spanners for weighted directed graphs. We propose a deterministic algorithm which constructs, for any n-vertex graph G(V, E), a round-trip spanner $H(V, E' \subseteq E)$ of stretch $2k + \epsilon$ and size $O((k/\epsilon) \cdot$ $n^{1+1/k}\log(nw)$), where w is the maximum edge weight of G. Notably, this is the first deterministic construction of round-trip spanners and its stretch-size trade-off even improves the previous state-of-the-art randomized algorithm by Roditty et al. More specifically, the size is asymptotically reduced by a factor of k while the stretch factor remains the same. The result is the first clear improvement on round-trip spanners after about ten years and re-raises the open question that how best we can hope for the stretchsize trade-off of round-trip spanners in digraphs.

© 2017 Elsevier B.V. All rights reserved.

that the additive term must be polynomial instead of a constant term using the size bound $o(n^{4/3})$. At the same time, mixed spanners, such as (α, β) -spanners in which the distance in the spanner is at most $\alpha \cdot d + \beta$ with d being the distance in the graph, receive a lot of research as well [9,16,13,4].

The definition of spanners can be extended to digraphs naturally but it becomes trivial to study sparse spanners. Consider an *n*-vertex bipartite digraph G(LHS, RHS)where LHS and RHS both have n/2 vertices and each vertex in LHS contains edges to all vertices in RHS. A spanner by definition requires to include all the edges, even only to preserve the connectivity, and thus has size $\Omega(n^2)$. Therefore, instead of studying one-way distance in digraphs, Cowen et al. [7,8] considered round-trip distance between two vertices. The round-trip distance between vertex u and v is the sum of the one-way distance from uto *v* and the one-way distance from *v* to *u*. In the papers, they studied the round-trip routing schemes and their results imply round-trip spanners, the data structure approximating round-trip distances instead of one-way distances in digraphs, of stretch $2^k - 1$ and size $\tilde{O}(n^{1+1/k})$. The round-trip spanner is close to being optimal when k = 2

www.elsevier.com/locate/ipl

but when k is a large integer, the stretch becomes extremely large.

Later, Roditty et al. [14] proposed the state-of-the-art randomized algorithm for constructing round-trip spanners of stretch $2k + \epsilon$ and size min{ $O((k^2/\epsilon) \cdot n^{1+1/k} \log(nw))$, $O((k/\epsilon)^2 n^{1+1/k} \log^{2-1/k} n)$, where w is the maximum edge weight in the input graph G. The results significantly improve the stretch $2^k - 1$ of Cowen et al. [7,8] to $2k + \epsilon$, much closer to the optimal stretch 2k - 1 of spanners of undirected graphs. In their paper, they did not provide any deterministic algorithm for round-trip spanners, and it is still unclear whether the stretch-size trade-off of round-trip spanners can be further improved, e.g. reducing the stretch factor to 2k - 1 to be consistent with the trade-off of spanners of undirected graphs. Unfortunately, there have been as far as we know no clear improvement on the round-trip spanners by Roditty et al. [14] published for about ten years. Zhu and Lam [18] studied the source-wise round-trip spanners where only the round-trip distances between a given source vertex set and all vertices are approximated. Pachocki et al. [11] designed faster constructions of round-trip spanners of stretch $O(k \log n)$ and size $O(n^{1+1/k}\log^2 n)$ in $\tilde{O}(mn^{1/k})$ time with *m* being the number of edges of the original graph. They also constructed additive round-trip spanners of additive term $O(n^{\alpha})$ and size $\tilde{O}(n^{2-\alpha})$. However, they did not clearly improve the stretch-size trade-off of round-trip spanners by Roditty et al. [14].

In this paper, we study the derandomization of the state-of-the-art randomized algorithm and propose a deterministic algorithm which notably exhibits a better stretch-size trade-off than the previous state-of-the-art. Our main result is:

Theorem 1. For any *n*-vertex digraph with maximum edge weight *w*, there exists a deterministic construction of a round-trip spanner of stretch $2k + \epsilon$ and size $O((k/\epsilon) \cdot n^{1+1/k} \log(nw))$.

The size is reduced by a factor of k compared to the previous state-of-the-art asymptotically while the stretch factor remains the same. Our results are obtained by combining ideas from both Cohen [6] and Roditty et al. [14].

In Section 2, we define the terms and notations used in the paper. We provide the details of the deterministic algorithm for round-trip spanners and prove its stretch and size bound in Section 3. Finally, we conclude the paper with a short discussion on future work in Section 4.

2. Notations and definitions

We consider weighted digraphs in this paper. In a graph G(V, E, W) (*W* assigns weights to edges in *E* and can be omitted for a succinct presentation), the subgraph of *G* induced by vertices in $U \subseteq V$ is denoted as G(U). A path *P* from vertex *u* to vertex *v* in *G* is a sequence of edges in *G* traversing from *u* to *v*. The distance of *P* is the sum of edge weights of all the edges on *P*. The one-way shortest distance amongst all the paths from *u* to *v* in *G*, and its distance is called the one-way distance from *u* to *v* in *G*.

A round-trip shortest path between u and v in a graph H consists of a one-way shortest path from u to v in H and a one-way shortest path from v to u in H, and its distance is called the *round-trip distance* $d_{RT}(u, v, H)$. We do not have to assume unique shortest paths (and thus unique round-trip shortest paths) between any vertices and there can exist multiple shortest paths between them. A *round-trip spanner* of stretch k of a digraph G(V, E) is a subgraph H(V, E') such that for vertices $u, v \in V$, $d_{RT}(u, v, H) \leq 2k \cdot d_{RT}(u, v, G)$.

A (round-trip) ball $Ball_U(u, R)$ of *G* is a set of vertices whose round-trip distance from *u* in G(U) is less than or equal to the radius *R*. For a ball $B = Ball_U(u, R)$, let its round-trip tree RT-Tree(*B*) be the union of the shortest path tree in G(U) from *u* to every vertex in *B*, and the shortest path tree in G(U) from every vertex in *B* to *u*. We use |B| to denote the number of vertices in *B*. Because of the fact that each vertex on a shortest path from *u* to $v \in B$ or from *v* to *u* must be in *B* as well, the number of edges in RT-Tree(*B*) is at most 2(|B| - 1).

3. An improved round-trip spanner algorithm

The state-of-the-art randomized algorithm for roundtrip spanners has not yet been derandomized, although its base work [6] includes some deterministic results. We apply the derandomization technique of [6] in the round-trip spanners [14], and prove the size and stretch bounds independently.

The core of the derandomization is to derandomize the construction of (k, R)-cover, which we use the same definition as [14].

Definition 1. In a digraph G(V, E), a collection C of roundtrip balls is a (k, R)-cover of G if and only if each ball in C has radius at most kR, and for every $u, v \in V$ with their round-trip distance $d_{RT}(u, v, G) \leq R$, there is a round-trip ball $B \in C$ such that $u, v \in B$.

We define (and construct) the *cluster* ball *cluster*(u, U) of a vertex u and its *core* ball *core*(u, U), with respect to an arbitrary vertex set U as follows by iterations. Initially, *cluster*(u, U) is set to u itself, which can be considered as $Ball_U(u, 0) = Ball_U(u, 0 \cdot R)$. In each iteration, we first assign *cluster*(u, U) as the core ball *core*(u, U), and then increase the radius of *cluster*(u, U) by R, e.g., from $Ball_U(u, (i - 1) \cdot R)$ to $Ball_U(u, i \cdot R)$. This process continues until the size of the cluster is less than or equal to $n^{1/k}$ times that of its core ball in terms of the number of vertices. More formally, the algorithm is summarized in Algorithm 1.

Theorem 2. The cluster ball cluster(u, U) output by Algorithm 1 has radius at most $k \cdot R$.

Proof. We prove that the construction stops with that $i \le k + 1$. Then the cluster ball *cluster*(*u*, *U*), which is $Ball_U(u, (i - 1) \cdot R)$ at the termination has radius at most $k \cdot R$.

Note that before the last iteration, the number of vertices in G(cluster(v, U)) is larger than that of G(core(v, U))

Download English Version:

https://daneshyari.com/en/article/4950801

Download Persian Version:

https://daneshyari.com/article/4950801

Daneshyari.com