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In this paper, we study the deterministic construction of round-trip spanners for weighted 
directed graphs. We propose a deterministic algorithm which constructs, for any n-vertex 
graph G(V , E), a round-trip spanner H(V , E ′ ⊆ E) of stretch 2k + ε and size O ((k/ε) ·
n1+1/k log(nw)), where w is the maximum edge weight of G . Notably, this is the first 
deterministic construction of round-trip spanners and its stretch-size trade-off even 
improves the previous state-of-the-art randomized algorithm by Roditty et al. More 
specifically, the size is asymptotically reduced by a factor of k while the stretch factor 
remains the same. The result is the first clear improvement on round-trip spanners after 
about ten years and re-raises the open question that how best we can hope for the stretch-
size trade-off of round-trip spanners in digraphs.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Sparse spanners of undirected graphs, since they were 
introduced in 1989 [12], have received considerable re-
search in the theory community. A sparse spanner of an 
undirected graph approximates distances in the graph such 
that the distance between any pair of vertices in the span-
ner is no larger than k times of that in the graph, and k
is called the stretch factor. It is well known that for any 
n-vertex graph, there exists a spanner of stretch 2k − 1
and size (the number of edges) O (n1+1/k). This is opti-
mal if we believe the Erdos’s Conjecture [10]. See [3,15]
for the concrete constructions. A lot of research efforts 
were then devoted to the additive spanners, where the dis-
tance between any vertex pair is no larger by an additive 
term β instead of a multiplicative factor. Here the span-
ner is called a +β-spanner. See [2,4,17,5] for the different 
constructions of +2-, +6-, +4-spanners of size O (n3/2), 
O (n4/3), O (n7/5) respectively. Abbound et al. [1] showed 
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that the additive term must be polynomial instead of a 
constant term using the size bound o(n4/3). At the same 
time, mixed spanners, such as (α, β)-spanners in which 
the distance in the spanner is at most α · d + β with d
being the distance in the graph, receive a lot of research as 
well [9,16,13,4].

The definition of spanners can be extended to digraphs 
naturally but it becomes trivial to study sparse span-
ners. Consider an n-vertex bipartite digraph G(LH S, R H S)

where LH S and R H S both have n/2 vertices and each 
vertex in LH S contains edges to all vertices in R H S . 
A spanner by definition requires to include all the edges, 
even only to preserve the connectivity, and thus has size 
�(n2). Therefore, instead of studying one-way distance in 
digraphs, Cowen et al. [7,8] considered round-trip distance
between two vertices. The round-trip distance between 
vertex u and v is the sum of the one-way distance from u
to v and the one-way distance from v to u. In the papers, 
they studied the round-trip routing schemes and their re-
sults imply round-trip spanners, the data structure approxi-
mating round-trip distances instead of one-way distances 
in digraphs, of stretch 2k − 1 and size Õ (n1+1/k). The 
round-trip spanner is close to being optimal when k = 2
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but when k is a large integer, the stretch becomes ex-
tremely large.

Later, Roditty et al. [14] proposed the state-of-the-art 
randomized algorithm for constructing round-trip spanners 
of stretch 2k + ε and size min{O ((k2/ε) · n1+1/k log(nw)),

O ((k/ε)2n1+1/k log2−1/k n)}, where w is the maximum 
edge weight in the input graph G . The results significantly 
improve the stretch 2k − 1 of Cowen et al. [7,8] to 2k + ε , 
much closer to the optimal stretch 2k − 1 of spanners 
of undirected graphs. In their paper, they did not pro-
vide any deterministic algorithm for round-trip spanners, 
and it is still unclear whether the stretch-size trade-off of 
round-trip spanners can be further improved, e.g. reduc-
ing the stretch factor to 2k − 1 to be consistent with the 
trade-off of spanners of undirected graphs. Unfortunately, 
there have been as far as we know no clear improvement 
on the round-trip spanners by Roditty et al. [14] pub-
lished for about ten years. Zhu and Lam [18] studied the 
source-wise round-trip spanners where only the round-trip 
distances between a given source vertex set and all ver-
tices are approximated. Pachocki et al. [11] designed faster 
constructions of round-trip spanners of stretch O (k log n)

and size O (n1+1/k log2 n) in Õ (mn1/k) time with m be-
ing the number of edges of the original graph. They also 
constructed additive round-trip spanners of additive term 
O (nα) and size Õ (n2−α). However, they did not clearly im-
prove the stretch-size trade-off of round-trip spanners by 
Roditty et al. [14].

In this paper, we study the derandomization of the 
state-of-the-art randomized algorithm and propose a de-
terministic algorithm which notably exhibits a better 
stretch-size trade-off than the previous state-of-the-art. 
Our main result is:

Theorem 1. For any n-vertex digraph with maximum edge 
weight w, there exists a deterministic construction of a round-
trip spanner of stretch 2k +ε and size O ((k/ε) ·n1+1/k log(nw)).

The size is reduced by a factor of k compared to the 
previous state-of-the-art asymptotically while the stretch 
factor remains the same. Our results are obtained by com-
bining ideas from both Cohen [6] and Roditty et al. [14].

In Section 2, we define the terms and notations used in 
the paper. We provide the details of the deterministic al-
gorithm for round-trip spanners and prove its stretch and 
size bound in Section 3. Finally, we conclude the paper 
with a short discussion on future work in Section 4.

2. Notations and definitions

We consider weighted digraphs in this paper. In a graph 
G(V , E, W ) (W assigns weights to edges in E and can be 
omitted for a succinct presentation), the subgraph of G in-
duced by vertices in U ⊆ V is denoted as G(U ). A path
P from vertex u to vertex v in G is a sequence of edges 
in G traversing from u to v . The distance of P is the sum 
of edge weights of all the edges on P . The one-way short-
est path from u to v in G is the path with the shortest 
distance amongst all the paths from u to v in G , and its 
distance is called the one-way distance from u to v in G .

A round-trip shortest path between u and v in a graph 
H consists of a one-way shortest path from u to v in H
and a one-way shortest path from v to u in H , and its dis-
tance is called the round-trip distance dRT (u, v, H). We do 
not have to assume unique shortest paths (and thus unique 
round-trip shortest paths) between any vertices and there 
can exist multiple shortest paths between them. A round-
trip spanner of stretch k of a digraph G(V , E) is a subgraph 
H(V , E ′) such that for vertices u, v ∈ V , dRT (u, v, H) ≤
2k · dRT (u, v, G).

A (round-trip) ball BallU (u, R) of G is a set of vertices 
whose round-trip distance from u in G(U ) is less than or 
equal to the radius R . For a ball B = BallU (u, R), let its 
round-trip tree RT -T ree(B) be the union of the shortest 
path tree in G(U ) from u to every vertex in B , and the 
shortest path tree in G(U ) from every vertex in B to u. 
We use |B| to denote the number of vertices in B . Because 
of the fact that each vertex on a shortest path from u to 
v ∈ B or from v to u must be in B as well, the number of 
edges in RT -T ree(B) is at most 2(|B| − 1).

3. An improved round-trip spanner algorithm

The state-of-the-art randomized algorithm for round-
trip spanners has not yet been derandomized, although its 
base work [6] includes some deterministic results. We ap-
ply the derandomization technique of [6] in the round-trip 
spanners [14], and prove the size and stretch bounds inde-
pendently.

The core of the derandomization is to derandomize the 
construction of (k, R)-cover, which we use the same defi-
nition as [14].

Definition 1. In a digraph G(V , E), a collection C of round-
trip balls is a (k, R)-cover of G if and only if each ball in 
C has radius at most kR , and for every u, v ∈ V with their 
round-trip distance dRT (u, v, G) ≤ R , there is a round-trip 
ball B ∈ C such that u, v ∈ B .

We define (and construct) the cluster ball cluster(u, U )

of a vertex u and its core ball core(u, U ), with respect 
to an arbitrary vertex set U as follows by iterations. Ini-
tially, cluster(u, U ) is set to u itself, which can be consid-
ered as BallU (u, 0) = BallU (u, 0 · R). In each iteration, we 
first assign cluster(u, U ) as the core ball core(u, U ), and 
then increase the radius of cluster(u, U ) by R , e.g., from 
BallU (u, (i − 1) · R) to BallU (u, i · R). This process contin-
ues until the size of the cluster is less than or equal to 
n1/k times that of its core ball in terms of the number of 
vertices. More formally, the algorithm is summarized in Al-
gorithm 1.

Theorem 2. The cluster ball cluster(u, U ) output by Algo-
rithm 1 has radius at most k · R.

Proof. We prove that the construction stops with that 
i ≤ k + 1. Then the cluster ball cluster(u, U ), which is 
BallU (u, (i − 1) · R) at the termination has radius at most 
k · R .

Note that before the last iteration, the number of ver-
tices in G(cluster(v, U )) is larger than that of G(core(v, U ))
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