
Information Processing Letters 126 (2017) 1–6

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

An incremental linear-time learning algorithm
for the Optimum-Path Forest classifier

Moacir Ponti ∗, Mateus Riva

Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo – São Carlos, SP 13566-590, Brazil

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 November 2016
Received in revised form 2 May 2017
Accepted 11 May 2017
Available online 16 May 2017
Communicated by R. Uehara

Keywords:
OPF
Graph algorithms
Computational complexity
Minimum spanning tree
Machine learning

We present a classification method with incremental capabilities based on the Optimum-
Path Forest classifier (OPF). The OPF considers instances as nodes of a fully-connected 
training graph, arc weights represent distances between two feature vectors. Our algorithm 
includes new instances in an OPF in linear-time, while keeping similar accuracies when 
compared with the original quadratic-time model.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The optimum-path forest (OPF) classifier [1] is a clas-
sification method that can be used to build simple, multi-
class and parameter independent classifiers. One possible 
drawback of using the OPF classifier in learning scenar-
ios in which there is need to constantly update the model 
is its quadratic training time. Let a training set be com-
posed of n examples, the OPF training algorithm runs in 
O (n2) time (note that all complexity in this paper relates 
to running time). Some efforts were made to mitigate this 
running time by using several OPF classifiers trained with 
ensembles of reduced training sets [2] and fusion using 
split sets using multi-threading [3]. Also, recent work de-
veloped strategies to speed-up the training algorithm by 
taking advantage of data structures such as [1,4]. However, 
an OPF-based method with incremental capabilities is still 
to be investigated, since sub-quadratic algorithms are im-
portant in many scenarios [5].

* Corresponding author.
E-mail address: ponti@usp.br (M. Ponti).

Incremental learning is a machine learning paradigm in 
which the classifier changes and adapts itself to include 
new examples that emerged after the initial construction 
of the classifier [6]. As such, an incremental-capable clas-
sifier has to start with an incomplete a priori dataset and 
include successive new data without the need to rebuild 
itself. In [4] the authors propose an alternative OPF al-
gorithm which is more efficient in retraining the model, 
but their algorithm is not incremental. Also, the empiri-
cal evidence shows that the running time is still quadratic, 
although with a significantly smaller constant. In this pa-
per we describe an algorithm that can include new exam-
ples individually (or in small batches) in a previously built 
model, which is a different objective when compared to [4]
and [1]. In fact, we already used the improvements pro-
posed by [1]. Therefore our new algorithm does not com-
pete, but rather can be used as a complement for those 
variants.

Because OPF is based on the Image Foresting Trans-
form for which there is a differential algorithm available 
(DIFT) [7], it would be a natural algorithm to try. However, 
DIFT is an image processing algorithm and includes all new 
pixels/nodes as prototypes, which would progressively con-

http://dx.doi.org/10.1016/j.ipl.2017.05.004
0020-0190/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2017.05.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:ponti@usp.br
http://dx.doi.org/10.1016/j.ipl.2017.05.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2017.05.004&domain=pdf


2 M. Ponti, M. Riva / Information Processing Letters 126 (2017) 1–6

Fig. 1. OPF-Incremental cases when adding a new example (a grey triangle): (a) conquered by a tree of the same class through a non-prototype, (b) con-
quered by a tree of the same class through a prototype, (c) conquered by a tree of a distinct class.

vert the model into a 1-Nearest Neighbour classifier. There-
fore we propose an alternative solution that maintains the 
connectivity properties of optimum-path trees.

Our OPF-Incremental (OPFI) is inspired in graph the-
ory methods to update minimum spanning trees [8] and 
minimal length paths [9] in order to maintain the graph 
structure and thus the learning model. We assume there is 
an initial model trained with the original OPF training, and 
then perform several inclusions of new examples appear-
ing over time. This is an important feature since models 
should be updated in an efficient way in order to comply 
with realistic scenarios. Our method will be useful every-
where the original OPF is useful, along with fulfilling in-
cremental learning requirements.

2. OPF incremental (OPFI)

The optimum-path forest (OPF) classifier [1] interprets 
the instances (examples) as the nodes (vertices) of a graph. 
The edges connecting the vertices are defined by some ad-
jacency relation between the examples, weighted by a dis-
tance function. It is expected that training examples from 
a given class will be connected by a path of nearby exam-
ples. Therefore the model that is learned by the algorithm 
is composed by several trees, each tree is a minimum 
spanning tree (MST) and the root of each tree is called pro-
totype.

Our OPF incremental updates an initial model obtained 
by the original OPF training by using the minimum-
spanning tree properties in the existing optimum-path 
forest. Provided this initial model, our algorithm is able 
to include a new instance in linear-time. Note that in in-
cremental learning scenarios it is typical to start with an 
incomplete training set, often presenting a poor accuracy 
due to the lack of a sufficient sample.

Our solution works by first classifying the new example 
using the current model. Because the label of the classi-
fied example is known, it is possible to infer if it has been 
conquered by a tree of the same class (i.e. it was correctly 
classified) or not. We also know which node was respon-
sible for the conquest, i.e. its predecessor, thus we have 
three possible cases:

1. Predecessor belongs to the same class and is not a 
prototype: the new example is inserted in the prede-
cessor’s tree, maintaining the properties of a minimum 
spanning tree.

2. Predecessor belongs to the same class and is a proto-
type: we must discover if the new example will take 
over as prototype. If so, the new prototype must re-
conquer the tree; otherwise, it is inserted in the tree 
as in the first case.

3. Predecessor belongs to another class: the new exam-
ple and its predecessor become prototypes of a new 
tree. The new example will be root of an new tree; 
while the predecessor will begin a reconquest of its 
own tree, splitting it in two.

Fig. 1 illustrates the three cases when an element of the 
‘triangle’ class is inserted in the OPF.

The classification and insertion of new elements is de-
scribed on Algorithm 1 and shows the high-level solution 
described above.

Algorithm 1 OPF-Incremental insertion.
Require: a previously trained OPF model T with n vertices; new instances 

to be included Z [1...b].
1: OPF_Classify(Z, T) // as in [1]
2: for i ← 1 to b (each new example) do
3: if Z [i].label = Z [i].truelabel then
4: if Z [i].pred is prototype then
5: recheckPrototype(Z [i],Z [i].pred,T ) // Algorithm 3
6: else
7: insertIntoMST(Z [i],Z [i].pred,T ) // Algorithm 2
8: end if
9: else

10: Z [i] becomes a prototype
11: Z [i].pred becomes a prototype
12: reconquest(Z [i].pred Z [i].pred, T ) // Algorithm 4
13: end if
14: end for
15: return T

The minimum spanning tree insertion function, de-
scribed on Algorithm 2 is an adapted version of the min-
imum spanning tree updating algorithm proposed by [8]. 
The function for rechecking a prototype, described on Al-
gorithm 3 takes the distance between the prototype and its 



Download English Version:

https://daneshyari.com/en/article/4950806

Download Persian Version:

https://daneshyari.com/article/4950806

Daneshyari.com

https://daneshyari.com/en/article/4950806
https://daneshyari.com/article/4950806
https://daneshyari.com

