
Information Processing Letters 121 (2017) 17–21

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Did the train reach its destination: The complexity of finding 

a witness

Karthik C. S. 1

Department of Applied Mathematics and Computer Science, Weizmann Institute of Science, Israel

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 September 2016
Received in revised form 6 January 2017
Accepted 8 January 2017
Available online 16 January 2017
Communicated by B. Doerr

Keywords:
Switch graphs
PLS
Cellular automaton
Combinatorial problems

Recently, Dohrau et al. studied a zero-player game on switch graphs and proved that 
deciding the termination of the game is in NP ∩ coNP. In this short paper, we show that 
the search version of this game on switch graphs, i.e., the task of finding a witness of 
termination (or of non-termination) is in PLS.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Over the years, switch graphs have been a natural 
model for studying many combinatorial problems (see [4]
and references therein). Dohrau et al. [1] study a problem 
on switch graphs, which as they suggest fits well in the 
theory of cellular automata. Informally, they describe their 
problem in the following way.

“Suppose that a train is running along a railway net-
work, starting from a designated origin, with the goal of 
reaching a designated destination. The network, how-
ever, is of a special nature: every time the train tra-
verses a switch, the switch will change its position im-
mediately afterwards. Hence, the next time the train 
traverses the same switch, the other direction will be 
taken, so that directions alternate with each traversal 
of the switch.”

Given a network with origin and destination, what 
is the complexity of deciding whether the train, starting 
at the origin, will eventually reach the destination?

E-mail address: karthik.srikanta@weizmann.ac.il.
1 This work was partially supported by ISF-UGC 1399/14 grant.

They showed that deciding the above problem lies in 
NP ∩ coNP.

In this paper, we address the complexity of the search 
version of the above problem. From a result of Megiddo 
and Papadimitriou [5], we have that F (NP ∩ coNP) ⊆ TFNP, 
i.e., the search version of any decision problem in NP ∩
coNP is in TFNP. We show that the search version of the 
problem considered by Dohrau et al. is in PLS, a complex-
ity class inside TFNP that captures the difficulty of finding 
a locally optimal solution in optimization problems.

2. Preliminaries

We use the following notation [n] = {1, . . . , n} and 
�n� = {0, . . . , n}. We recapitulate here the definition of 
the complexity class PLS, introduced by Johnson et al. 
[3]. There are many equivalent ways to define the class 
PLS and below we define it through its complete problem
LOCALOPT similar to [2].

Definition 1 (LOCALOPT). Given circuits S : {0, 1}n → {0, 1}n , 
and V : {0, 1}n → [2n], find a string x ∈ {0, 1}n satisfying 
V (x) ≥ V (S(x)).

http://dx.doi.org/10.1016/j.ipl.2017.01.004
0020-0190/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2017.01.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:karthik.srikanta@weizmann.ac.il
http://dx.doi.org/10.1016/j.ipl.2017.01.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2017.01.004&domain=pdf


18 Karthik C. S. / Information Processing Letters 121 (2017) 17–21

Definition 2. PLS is the class of all search problems which 
are polynomial time reducible to LOCALOPT.

Below, we recollect some definitions introduced in [1].

2.1. ARRIVAL problem

We start with the object of study: switch graphs. We 
use the exact same notations as in [1].

Definition 3 (Switch graph). A switch graph is a 4-tuple 
G = (V , E, s0, s1), where s0, s1 : V → V , E = {(v, s0(v)) |
v ∈ V } ∪ {(v, s1(v)) | v ∈ V }, with self-loops allowed. For 
every vertex v ∈ V , we refer to s0(v) as the even succes-
sor of v , and we refer to s1(v) as the odd successor of v . 
For every v ∈ V , E+(v) denotes the set of outgoing edges 
from v , and E−(v) denotes the set of incoming edges to v .

Next, consider a formal definition of the procedure RUN, 
which captures the run of the train described in the intro-
duction.

Definition 4 (RUN procedure given in [1]). Given a switch 
graph G = (V , E, s0, s1) with origin and destination o, d ∈
V , the procedure RUN is described below. For the pro-
cedure, we assume arrays s_curr and s_next, in-
dexed by V , such that initially s_curr[v] = s0(v) and 
s_next[v] = s1(v) for all v ∈ V .

procedure RUN(G,o,d)
v := o
while v �= d do

w := s_curr[v]
swap (s_curr[v], s_next[v])
v := w � traverse edge (v, w)

end while
end procedure

The problem ARRIVAL, considered in [1] is the following.

Problem 1 (ARRIVAL). Given a switch graph G = (V, E, s0, s1), 
an origin o ∈ V , and a destination d ∈ V , the problem AR-

RIVAL is to decide if the procedure RUN terminates or not.

Theorem 1 ([1]). ARRIVAL is in NP ∩ coNP.

In order to prove the above result, the authors consider 
the run profile as a witness. Elaborating, the run profile is 
a function which assigns to each edge the number of times 
it has been traversed during the procedure RUN. It is easy 
to note that a run profile has to be a switching flow.

Definition 5 (Switching flow, as defined in [1]). Let G =
(V , E, s0, s1) be a switch graph, and let o, d ∈ V , o �= d. 
A switching flow is a function x : E → N0 (where x(e) is 
denoted as xe) such that the following two conditions hold 
for all v ∈ V .

∑
e∈E+(v)

xe −
∑

e∈E−(v)

xe =

⎧⎪⎨
⎪⎩

1, v = o,

−1, v = d,

0, otherwise.

(1)

0 ≤ x(v,s1(v)) ≤ x(v,s0(v)) ≤ x(v,s1(v)) + 1. (2)

Note that while every run profile is a switching flow, 
the converse is not always true as the balancing condi-
tion (2) fails to capture the strict alternation between even 
and odd successors. Nonetheless, the existence of a switch-
ing flow implies the termination of the RUN procedure 
(Lemma 1 of [1]).

3. S-ARRIVAL problem

Now, we describe a reduction from an instance of AR-

RIVAL to two instances of ARRIVAL (this is an implicit step 
in the proof of Theorem 1). Given an instance (G, o, d) of
ARRIVAL, we build two new instances of ARRIVAL, 

(
H,o,d

)
and (H, o, d), where H = (V ∪ {o, d}, E ′, s′

0, s
′
1) is a switch 

graph specified below. Let Xd be the following subset of 
the vertex set of G:

Xd = {v | There is no directed path in G from v to d} .

The vertex set of H is the vertex set of G with the addition 
of two new vertices o and d. We define s0(o) = s1(o) = o. 
For i ∈ {0, 1} and v ∈ V ∪ {d}, we have that s′

i of H is ob-
tained from si of G as follows.

s′
i(v) =

⎧⎪⎨
⎪⎩

v, v ∈ {d,d},
d, v ∈ Xd,

si(v), otherwise.

This reduction has the following property.

Claim 1. If (G, o, d) is an YES instance of ARRIVAL then, (H, o, d)

is an YES instance of ARRIVAL and (H, o, d) is a NO instance of 
ARRIVAL. On the other hand, if (G, o, d) is a NO instance of AR-

RIVAL then, (H, o, d) is a NO instance of ARRIVAL and (H, o, d) is 
an YES instance of ARRIVAL.

The proof of the above claim follows from the proof of 
Theorem 3 in [1]. We are now ready to describe a search 
version of the ARRIVAL problem.

Problem 2 (S-ARRIVAL). Given a switch graph G = (V , E,

s0, s1), an origin o ∈ V , and a destination d ∈ V , the prob-
lem S-ARRIVAL is to either find a switching flow of (H, o, d)

or a switching flow of (H, o, d).

We have that from Lemma 1 of [1], a switching flow 
of (H, o, d) is an NP-witness for the existence of a run 
profile of (G, o, d), and that a switching flow of (H, o, d)

is a coNP-witness for the non-existence of a run pro-
file of (G, o, d). Thus, S-ARRIVAL is the appropriate search 
version problem of the ARRIVAL problem. From Claim 1, 
S-ARRIVAL is clearly in TFNP. In the next section, we show 
that S-ARRIVAL is in PLS, a subclass of TFNP.

Below, we essentially show that switching flows are 
bounded, and this is a critical result in order to establish 
the reduction in Section 4. Note that this is a strengthen-
ing of Lemma 2 in [1] which provided a bound on the run 
profile.



Download English Version:

https://daneshyari.com/en/article/4950822

Download Persian Version:

https://daneshyari.com/article/4950822

Daneshyari.com

https://daneshyari.com/en/article/4950822
https://daneshyari.com/article/4950822
https://daneshyari.com

