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It is known that the maximum cardinality cut problem is NP-hard even in chordal graphs. 
On the positive side, the problem is known to be polynomial time solvable in some sub-
classes of proper interval graphs which is in turn a subclass of chordal graphs. In this paper, 
we consider the time complexity of the problem in proper interval graphs, and propose a 
polynomial-time dynamic programming algorithm.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A cut of a graph G = (V (G), E(G)) is a partition of V (G)

into two subsets S, ̄S where S̄ = V (G) \ S . The cut-set of 
(S, ̄S) is the set of edges of G having exactly one endpoint 
in S . The maximum cardinality cut problem (MaxCut) is to 
find a cut with a maximum size cut-set, of a given graph.

MaxCut remains NP-hard when restricted to the fol-
lowing graph classes: chordal graphs, undirected path 
graphs, split graphs, tripartite graphs, co-bipartite graphs 
[1], unit disk graphs [2] and total graphs [3]. On the pos-
itive side, it was shown that MaxCut can be solved in 
polynomial-time in planar graphs [4], in line graphs [3], 
in graphs with bounded clique-width [5], and the class of 
graphs factorable to bounded treewidth graphs [1].

Proper interval graphs are not necessarily planar since 
any clique (in particular K5) is a proper interval graph. 
They are not necessarily line graphs either since the graph 
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Ā consisting of 6 vertices [6] is a proper interval graph, but 
a forbidden subgraph of line graphs [7]. It is also known 
that proper interval graphs may have unbounded clique-
width [8]. In [9], we have shown that co-bipartite chain 
graphs are not factorable to bounded treewidth graphs. 
Since co-bipartite chain graphs are proper interval graphs, 
this result holds for them too. Therefore, none of the 
results mentioned in the previous paragraph implies a 
polynomial-time algorithm for proper interval graphs.

Polynomial-time algorithms for some subclasses of 
proper interval graphs (also known as indifference graphs) 
are proposed in [10] and in [9], for split indifference 
graphs and co-bipartite chain graphs, respectively. A poly-
nomial-time algorithm for proper interval graphs is pro-
posed in [11]. However, as pointed out in [10] (see the 
paragraph “The Balanced Cut Is not Always Maximal”) this 
algorithm contains a flaw and may return sub-optimal so-
lutions. Consequently, the complexity of MaxCut in proper 
interval graphs was open. In this work, we generalize the 
dynamic programming algorithm in [9] to proper interval 
graphs using the bubble model of proper interval graphs 
introduced in [12].
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Fig. 1. (a) A proper interval graph G , (b) an interval representation of G , (c) a bubble model of G .

2. Preliminaries

Graph notations and terms: Given a simple graph (no 
loops or parallel edges) G = (V (G), E(G)) and a vertex v
of G , uv denotes an edge between two vertices u, v of G . 
We also denote by uv the fact that uv ∈ E(G). We denote 
by NG(v) the set of neighbors of v in G . Two adjacent 
vertices u, v of G are twins if NG(u) \ {v} = NG(v) \ {u}. 
A vertex having degree zero is termed isolated, and a ver-
tex adjacent to all other vertices is termed universal. For 
a graph G and U ⊆ V (G), we denote by G[U ] the sub-

graph of G induced by U , and G \ U
def= G[V (G) \ U ]. 

For a singleton {x} and a set Y , Y + x def= Y ∪ {x} and 
Y − x def= Y \ {x}. A vertex set U ⊆ V (G) is a clique (resp. 
stable set) (of G) if every pair of vertices in U is adjacent 
(resp. non-adjacent). We denote by n be the number of 
vertices of G .

Some graph classes: A graph is bipartite if its vertex set 
can be partitioned into two stable sets V and V ′ . We de-
note such a graph as B(V , V ′, E) where E is the edge 
set. A graph G is co-bipartite if it is the complement 
of a bipartite graph, i.e. V (G) can be partitioned into 
two cliques K , K ′ . We denote such a graph as C(K , K ′, E)

where E is the set of edges that have exactly one endpoint 
in K .

A bipartite chain graph is a bipartite graph G = B(V ,

V ′, E) where V has a nested neighborhood ordering, i.e. its 
vertices can be ordered as v1, v2, . . . such that NG (v1) ⊆
NG(v2) ⊆ · · · . V has a nested neighborhood ordering if and 
only if V ′ has one [13]. Theorem 2.3 of [14] implies that if 
G = B(V , V ′, E) is a bipartite chain graph with no isolated 
vertices, then the number of distinct degrees in V is equal 
to the number of distinct degrees in V ′ .

A co-bipartite graph G = C(K , K ′, E) is a co-bipartite 
chain (also known as co-chain) graph if K has a nested 
neighborhood ordering [15]. Since K ⊆ NG(v) for every 
v ∈ K , the result for chain graphs implies that K has a 
nested neighborhood ordering if and only if K ′ has such 
an ordering.

A graph G is interval if its vertices can be represented 
by intervals on a straight line such that two vertices are 
adjacent in G if and only if the corresponding intervals are 
intersecting. An interval graph is proper (resp. unit) if it has 
an interval representation such that no interval properly 
contains another (resp. every interval has unit length). It is 
known that the class of proper interval graphs is equiva-
lent to the class of unit interval graphs [16].

Cuts: We denote a cut of a graph G by one of the sub-
sets of the partition. E(S, ̄S) denotes the cut-set of S , i.e. 
the set of the edges of G with exactly one endpoint in S , 
and cs(S) def= ∣∣E(S, S̄)

∣∣ is termed the cut size of S . A max-
imum cut of G is one having the biggest cut size among 
all cuts of G . We refer to this size as the maximum cut size
of G . Clearly, S and S̄ are dual; we thus can replace S by 
S̄ and S̄ by S everywhere. In particular, E(S, ̄S) = E( S̄, S), 
and cs(S) = cs( S̄).

Bubble models: A 2-dimensional bubbles structure B for a 
finite non-empty set A is a 2-dimensional arrangement of 
bubbles 

{
Bi, j | j ∈ [k], i ∈ [r j]

}
for some positive integers 

k, r1, . . . rk , such that B is a near-partition of A. That is, 
A = ∪B and the sets Bi, j are pairwise disjoint, allowing for 
the possibility of Bi, j = ∅ for arbitrarily many pairs i, j. For 
an element a ∈ A we denote by i(a) and j(a) the unique 
indices such that a ∈ Bi(a), j(a) .

Given a bubble structure B, the graph G(B) defined by 
B is the following graph:

i) V (G(B)) = ∪B, and
ii) uv ∈ E(G(B)) if and only if one of the following holds:

• j(u) = j(v),
• j(u) = j(v) + 1 and i(u) < i(v).

B is a bubble model for G(B).
A compact representation for a bubble model is an array 

of columns each of which contains a list of non-empty bub-
bles, and each bubble contains its row number in addition 
to the vertices in this bubble.

Theorem 2.1. [12]

i) A graph is a proper interval graph if and only if it has a 
bubble model.

ii) A bubble model for a graph on n vertices contains O (n2)

bubbles and it can be computed in O (n2) time.
iii) A compact representation of a bubble model for a graph on 

n vertices can be computed in O (n) time.

Note that the set of vertices in two consecutive columns 
in B induces a co-bipartite chain graph. In other words, 
a proper interval graph can be seen as a chain of co-
bipartite chain graphs, see Fig. 1. Using this observation, 
we generalize our result in [9]. To keep the analysis sim-
pler, we use the standard representation of the bubble 
model, since using the compact representation does not 
improve the overall running time of the algorithm.
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