A note on path embedding in crossed cubes with faulty vertices ${ }^{\text {N }}$

Hon-Chan Chen ${ }^{\text {a }}$, Yun-Hao Zou ${ }^{\text {b }}$, Yue-Li Wang ${ }^{\text {b,* }}$, Kung-Jui Pai ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Information Management, National Chin-Yi University of Technology, Taichung, Taiwan
${ }^{\text {b }}$ Department of Information Management, National Taiwan University of Science and Technology, Taipei, Taiwan
${ }^{\text {c }}$ Department of Industrial Engineering and Management, Ming Chi University of Technology, New Taipei City, Taiwan

A R T I C L E I N F O

Article history:

Received 23 October 2015
Received in revised form 17 January 2017
Accepted 17 January 2017
Available online 23 January 2017
Communicated by R. Uehara

Keywords:

Crossed cube
Fault tolerance
Path embedding
Automorphism
Vertex-transitive

Abstract

In this note, we investigate the problem of embedding paths of various lengths into crossed cubes with faulty vertices. In Park et al. (2007) [14] showed that, for any hypercube-like interconnection network of 2^{n} vertices with a set F of faulty vertices and/or edges, there exists a fault-free path of length ℓ between any two distinct fault-free vertices for each integer ℓ satisfying $2 n-3 \leqslant \ell \leqslant 2^{n}-|F|-1$. In this note, we show that, for crossed cubes CQ_{n} with $n \geqslant 5$, the range of ℓ can be extended to $\left[2 n-5,2^{n}-|F|-1\right]$. Moreover, we also show that the vertices of CQ_{5} can be partitioned into two symmetric groups.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A path P from vertex x to vertex y in a graph $G=$ (V, E) is a sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{\ell+1}$ with $v_{1}=x, v_{\ell+1}=y$, and $v_{i} v_{i+1} \in E(G)$ for $1 \leqslant i \leqslant \ell$. We use $\left\langle v_{1}, v_{2}, \ldots, v_{\ell+1}\right\rangle$ to denote such a path. The length of a path P is the number of edges in P. If a path P is of length ℓ, then there are $\ell+1$ vertices in P and we use $P_{\ell+1}$ to denote the path. The problem of embedding paths of various lengths into a hypercube-like interconnection network has been extensively studied [3-6,8,9,11,12, $14,15]$. If there exists a set F of faulty vertices, then the path embedding problem is to find out fault-free paths of each length. The results on embedding paths of various lengths into crossed cube CQ_{n}, which will be defined in

[^0]Section 2, are listed in Table 1, where $|F|$ is the number of faulty vertices and $d(x, y)$ is the distance between vertices x and y.

In this note, we investigate the problem of embedding fault-free paths of various lengths into a crossed cube with faulty vertices. We show that there exists a fault-free path of length ℓ between any two distinct fault-free vertices for each integer ℓ satisfying $2 n-5 \leqslant \ell \leqslant 2^{n}-|F|-1$, where F is the set of faulty vertices in CQ_{n} with $n \geqslant 5$ and $|F| \leqslant n-3$. This improves the results in [14] in which Park, Lim, and Kim showed that there exists a fault-free path of each length from $2 n-3$ to $2^{n}-|F|-1$ in a hypercube-like interconnection network.

The rest of this note is organized as follows. In Section 2, the formal definition and some properties of crossed cubes are introduced. In Section 3, we show that there are two symmetric groups in CQ_{5} as well as the main result of this note. Finally, concluding remarks are given in Section 4.

Table 1
Related results on embedding paths into CQ_{n}.

Reference No.	The range of n	$\|F\|$	The smallest length
$[3]$	$n \geqslant 3$	0	$\left\lceil\frac{n+1}{2}\right\rceil+1$
$[4,16]$	$n \geqslant 3$	0	The longest length
$[13]$	$n \geqslant 3$	$n-3$	$2^{n}-1$
$[14]$	$n \geqslant 3$	$n-3$	$2^{n}-1$
This note	$n \geqslant 5$	$n-3$	$2 n-3$
Our conjecture	$n \geqslant 2 k+1, k \geqslant 1$	$n-3$	$2 n-5$

Fig. 1. Automorphisms of CQ_{5}.

2. Preliminaries

Crossed cubes were introduced by Efe in [2]. An n-dimensional crossed cube CQ_{n} contains 2^{n} vertices in which the degree of every vertex is n. Every vertex of CQ_{n} is identified by a unique binary string of n bits which is also called an address. An n-dimensional crossed cube is defined recursively as follows.

Definition 2.1. Two 2-bit binary strings $x_{2} x_{1}$ and $y_{2} y_{1}$ are pair related, denoted by $x_{2} x_{1} \sim y_{2} y_{1}$, if and only if $(x, y) \in$ $\{(00,00),(10,10),(01,11),(11,01)\}$.

Definition 2.2. CQ_{1} is a complete graph of two vertices with addresses 0 and 1 , respectively. Crossed cube CQ_{n}, for $n \geqslant 2$, consists of two subcubes CQ_{n-1}^{0} and CQ_{n-1}^{1} in which CQ_{n-1}^{0} contains all vertices with addresses $u=u_{n-1} u_{n-2} \ldots u_{0}$ and CQ_{n-1}^{1} contains all vertices $v=v_{n-1} v_{n-2} \ldots v_{0}$, where $u_{n-1}=0$ and $v_{n-1}=1$. Two vertices u and v are joined by an edge in CQ_{n} if and only if
(1) $u_{n-2}=v_{n-2}$ when n is even, and
(2) $u_{2 i+1} u_{2 i} \sim v_{2 i+1} v_{2 i}$ for all i with $0 \leqslant i \leqslant\left\lfloor\frac{n-1}{2}\right\rfloor$.

Let $\mathrm{CQ}_{n-|y|}^{y}$ denote a subcube of CQ_{n} in which all vertices have prefix y in their addresses and $|y|$ is the number of bits in y. For a vertex $u \in \mathrm{CQ}_{n}$, the open neighborhood of u is the set $N(u)=\left\{v \in V\left(\mathrm{CQ}_{n}\right) \mid u v \in E\left(\mathrm{CQ}_{n}\right)\right\}$. Let $N_{\mathrm{CQ}_{n-|y|}^{y}}(u)$ denote the set of vertices in $N(u) \cap V\left(\mathrm{CQ}_{n-|y|}^{y}\right)$. For simplicity, when $N_{\mathrm{CQ}_{n-|y|}^{y}}$ (u) contains exactly one vertex, we also use $N_{\mathrm{CQ}_{n-|y|}^{y}}(u)$ to denote the vertex in the
set. For example, see Fig. 1(a) which depicts CQ_{5}. The subcube CQ_{3}^{00} contains vertices $0,1, \ldots, 7$ as all of these have 00 as the prefix in their addresses. The neighbors of vertex 0 are the vertices in $N_{\mathrm{CQ}_{5}}(0)=\{1,2,4,8,16\}$. Note that $N_{\mathrm{CQ}_{3}^{01}}(0)=8$ and $N_{\mathrm{CQ}_{4}^{1}}(0)=N_{\mathrm{CQ}_{3}^{10}}(0)=16$.

Definition 2.3. A path (respectively, cycle) is called a Hamiltonian path (respectively, Hamiltonian cycle) of G if it spans G. A graph G is Hamiltonian if it has a Hamiltonian cycle, and is called Hamiltonian connected if it contains a Hamiltonian path between any pair of distinct vertices. A graph G is f-fault Hamiltonian (respectively, f-fault Hamiltonian connected) if it remains Hamiltonian (respectively, Hamiltonian connected) after removing at most f vertices and/or edges.

Let F be a set of faulty vertices. We use $G-F$ to denote the resulting graph after the vertices in F are removed from G.

Theorem 2.4 ([3]). For $n \geqslant 3$, there exists a path of length ℓ between any two distinct vertices x and y in CQ_{n}, where ℓ is an integer satisfying $\left\lceil\frac{n+1}{2}\right\rceil+1 \leqslant \ell \leqslant 2^{n}-1$.

Theorem 2.5 ([7]). For $n \geqslant 3$, crossed cube $C Q_{n}$ is $(n-2)$-fault Hamiltonian and $(n-3)$-fault Hamiltonian connected.

Theorem 2.6 ([14]). In a restricted hypercube-like graph G of degree $n \geqslant 3$, each pair of vertices are joined by a path in $G-F$ of each length from $2 n-3$ to $|V(G-F)|-1$ for any set F of faulty elements (vertices and/or edges) with $|F| \leqslant n-3$.

https://daneshyari.com/en/article/4950825

Download Persian Version:

https://daneshyari.com/article/4950825

Daneshyari.com

[^0]: मे This research was partially supported by National Science Council of Taiwan under the Contract NSC 101-2221-E-011-038-MY3.

 * Corresponding author at: Department of Information Management, National Taiwan University of Science and Technology, Taipei, Taiwan.

 E-mail address: ylwang@cs.ntust.edu.tw (Y.-L. Wang).

