
Information Processing Letters 125 (2017) 1–4

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

An acceleration of FFT-based algorithms for the match-count

problem

Kensuke Baba

Fujitsu Laboratories, Kawasaki, 211-8581, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 November 2016
Received in revised form 24 April 2017
Accepted 24 April 2017
Available online 27 April 2017
Communicated by B. Doerr

Keywords:
Algorithms
Match-count problem
Convolution
FFT
Processing time

The match-count problem on strings is a problem of counting the matches of characters for
every possible gap of the starting positions between two strings. This problem for strings
of lengths m and n (m ≤ n) over an alphabet of size σ is classically solved in O (σn logm)

time using the algorithm based on the convolution theorem and a fast Fourier transform
(FFT). This paper provides a method to reduce the number of computations of the FFT
required in the FFT-based algorithm. The algorithm obtained by the proposed method still
needs O (σn logm) time, but the number of required FFT computations is reduced from
3σ to 2σ + 1. This practical improvement of the processing time is also applicable to
other algorithms based on the convolution theorem, including algorithms for the weighted
version of the match-count problem.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we address the match-count problem on
strings [1], which is, for two strings, to compute the vector
whose ith element is the number of matches between cor-
responding characters in the strings aligned with the gap i
between the start positions.

The match-count problem for strings of lengths m and
n (m ≤ n) over an alphabet � of size σ is solved in
O (σn log m) time using the algorithm based on the con-
volution theorem [2] and a fast Fourier transform (FFT),
while the naive algorithm requires O (mn) comparisons of
characters. This FFT-based approach was developed by Fis-
cher and Paterson [3]. This algorithm is efficient for the
lengths m, n of input strings but is not suitable for appli-
cations with a large alphabet size σ such as documents
written in natural language.

We propose a method to reduce the number of FFT
computations required in the FFT-based algorithm. The
computations of FFT are the main part of the algorithm,

E-mail address: baba.kensuke@jp.fujitsu.com.

and the number of the computations is proportional to σ .
Although the algorithm obtained by the proposed method
still needs O (σn log m) time, the number of required FFTs
is about two-thirds of the original algorithm. We describe
the key idea briefly. The FFT-based algorithm computes the
output vector using element-wise additions of the σ vec-
tors obtained by σ convolutions. Because a convolution
is computed using two FFTs, element-wise multiplications,
and an inverse of the FFT (IFFT), the number of FFTs is
3σ (on the assumption that each convolution is computed
without dividing vectors). We change the order of the IFFT
and the element-wise additions done after the convolu-
tions, and then the σ IFFTs are computed as a single IFFT.
Thus, the total number of FFT computations is reduced
from 3σ to 2σ + 1.

Another approach to improve the speed of the FFT-
based algorithm is randomization. Atallah et al. [4] ran-
domized the algorithm to reduce the processing time using
a trade-off with the accuracy of the solution’s estimation,
and several improvements in the randomized algorithm
were proposed [5–8]. The algorithm obtained by the pro-
posed method computes the exact solution instead of an
approximated one. Additionally, it is applicable to random-

http://dx.doi.org/10.1016/j.ipl.2017.04.013
0020-0190/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2017.04.013
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:baba.kensuke@jp.fujitsu.com
http://dx.doi.org/10.1016/j.ipl.2017.04.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2017.04.013&domain=pdf

2 K. Baba / Information Processing Letters 125 (2017) 1–4

ized algorithms, which yields a better trade-off between
the processing time and the accuracy of approximation.

The acceleration method is applicable to other al-
gorithms that partially use the computation of convo-
lutions. Abrahamson [9] proposed the essential idea of
an O (n

√
m log m) algorithm for the match-count prob-

lem which is faster than the FFT-based algorithm when
σ is large. This algorithm is regarded as a combination
of the FFT-based algorithm for characters that occur fre-
quently in the shorter string and a straightforward algo-
rithm to count matches for the other characters. Fredriks-
son and Grabowski [10] proposed a parallel computation
for convolutions which improves the complexity of Abra-
hamson’s algorithm to O (n

√
m/w log m) for a word size

w = �(log n). The improved algorithm also uses the FFT-
based algorithm for words obtained by packing plural
characters into a single word of size w . Therefore, the ac-
celeration method is applicable to those algorithms also.

2. Problem

Let � be a finite set of characters. For an integer n > 0,
�n is the set of the strings of length n over �. For a string
s of length n, si for 0 ≤ i < n is the ith character of s. For
strings s and t , st is the concatenation of s and t . For a
character a and an integer n > 0, an is the string of n a’s.

Let δ be a function such that δ(a, b) for a, b ∈ � is 1
if a = b, and 0 otherwise. Let x /∈ � be the never-match
character, that is, δ(x, a) = δ(a, x) = 0 for any a ∈ �. Then,
the score vector between s ∈ �m and t ∈ �n (m ≤ n) is de-
fined as the vector C(s, t) whose ith element for 0 ≤ i ≤
m + n − 2 is

ci =
m−1∑
j=0

δ(s j, t′
i+ j), (1)

where t′ = xm−1txm−1. The match-count problem is a prob-
lem of computing the score vector between two strings.

3. Algorithm

We introduce the FFT-based algorithm [3] as the basic
algorithm for the match-count problem, and we present a
modification to it.

3.1. Basic algorithm

We introduce the O (σn log n) algorithm that com-
putes the score vector between two strings in �n , where
|�| = σ . The algorithm can be extended to an O (σn log m)

algorithm for two strings of lengths n and m (< n) by di-
viding the longer string in the same way as the technique
used in [4].

Let ϕ be a function from � ∪ {x} to N, whose restric-
tion from � to {0, 1, . . . , σ − 1} is bijective, and such that
ϕ(x) = 0. Let φ be the function from � ∪ {x} to {0, 1}σ
such that the ith element of φ(a) for 0 ≤ i < σ and a ∈
� ∪ {x} is 1 if i = ϕ(a) and a ∈ �, and 0 otherwise. Then,
〈φ(a), φ(b)〉 = δ(a, b) for a, b ∈ � ∪ {x}. Let l = 2n − 1. Let
S and T be the l × σ matrices

S =
(
φ(sn−1)

T , φ(sn−2)
T , . . . , φ(s0)

T , O T , . . . , O T
)

and

T =
(
φ(t0)

T , φ(t1)
T , . . . , φ(tn−1)

T , O T , . . . , O T
)

, (2)

where MT is the transposed matrix of a matrix M and O
is the zero vector of dimensionality σ . For any matrix M ,
we denote the (i, j)-element of M by Mi, j with both in-
dices starting from 0. Then, Equation (1) is modified using
Equation (2) as

ci =
n−1∑
j=0

〈φ(s j),φ(t′
i+ j)〉 =

l−1∑
j=0

σ−1∑
k=0

S j,k · Ti− j,k

=
σ−1∑
k=0

l−1∑
j=0

S j,k · Ti− j,k, (3)

for 0 ≤ i < l, where Ti,k = Tl+i,k for any i and 0 ≤ k < σ . In
Equation (3), we can see the circular convolution

Ui,k =
l−1∑
j=0

S j,k · Ti− j,k (0 ≤ i < l) (4)

for each 0 ≤ k < σ . Then,

ci =
σ−1∑
k=0

Ui,k (5)

for 0 ≤ i < l.
Using Equation (4), the vector

(
U0,k, U1,k, . . . , Ul−1,k

)
is

the circular convolution of the two vectors (S0,k, S1,k, . . . ,
Sl−1,k) and

(
T0,k, T1,k, . . . , Tl−1,k

)
for each 0 ≤ k < σ . Let

Fn be the matrix of the discrete Fourier transform (DFT)
with n sample points, that is, (Fn)i, j = ω

i j
n for 0 ≤ i, j < n,

where ωn = e2π
√−1/n . Then, using the convolution theo-

rem [2] with DFT,

U = F −1
l (Fl S ◦ Fl T) , (6)

where ◦ is the operator of the Hadamard product.
Thus, the basic algorithm to compute C(s, t) is summa-

rized as follows:

1. Convert s and t to S and T , respectively;
2. Compute Fl S and Fl T using 2σ FFTs;
3. Compute X = Fl S ◦ Fl T using element-wise multiplica-

tions;
4. Compute U = F −1

l X using σ FFTs; and
5. Compute C(s, t) from U using element-wise additions.

The processing time of the algorithm is O (σ l log l),
which leads to O (σn log n). Process 1 needs O (l) evalua-
tions of φ, where an evaluation needs O (logσ) time. Pro-
cess 2 consists of 2σ FFTs, where an FFT needs O (l log l)
time. Process 3 needs O (σ l) multiplications. Process 4
needs σ FFTs. Process 5 needs O (σ l) additions. Therefore,
the total processing time is bound by O (σ l log l).

Download	English	Version:

https://daneshyari.com/en/article/4950832

Download	Persian	Version:

https://daneshyari.com/article/4950832

Daneshyari.com

https://daneshyari.com/en/article/4950832
https://daneshyari.com/article/4950832
https://daneshyari.com/

