An acceleration of FFT-based algorithms for the match-count problem

Kensuke Baba
Fujitsu Laboratories, Kawasaki, 211-8581, Japan

A R T I C L E I N F O

Article history:

Received 28 November 2016
Received in revised form 24 April 2017
Accepted 24 April 2017
Available online 27 April 2017
Communicated by B. Doerr

Keywords:

Algorithms
Match-count problem
Convolution
FFT
Processing time

Abstract

The match-count problem on strings is a problem of counting the matches of characters for every possible gap of the starting positions between two strings. This problem for strings of lengths m and $n(m \leq n)$ over an alphabet of size σ is classically solved in $O(\sigma n \log m)$ time using the algorithm based on the convolution theorem and a fast Fourier transform (FFT). This paper provides a method to reduce the number of computations of the FFT required in the FFT-based algorithm. The algorithm obtained by the proposed method still needs $O(\sigma n \log m)$ time, but the number of required FFT computations is reduced from 3σ to $2 \sigma+1$. This practical improvement of the processing time is also applicable to other algorithms based on the convolution theorem, including algorithms for the weighted version of the match-count problem.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we address the match-count problem on strings [1], which is, for two strings, to compute the vector whose i th element is the number of matches between corresponding characters in the strings aligned with the gap i between the start positions.

The match-count problem for strings of lengths m and $n(m \leq n)$ over an alphabet Σ of size σ is solved in $O(\sigma n \log m)$ time using the algorithm based on the convolution theorem [2] and a fast Fourier transform (FFT), while the naive algorithm requires $O(\mathrm{mn})$ comparisons of characters. This FFT-based approach was developed by Fischer and Paterson [3]. This algorithm is efficient for the lengths m, n of input strings but is not suitable for applications with a large alphabet size σ such as documents written in natural language.

We propose a method to reduce the number of FFT computations required in the FFT-based algorithm. The computations of FFT are the main part of the algorithm,

[^0]and the number of the computations is proportional to σ. Although the algorithm obtained by the proposed method still needs $O(\sigma n \log m)$ time, the number of required FFTs is about two-thirds of the original algorithm. We describe the key idea briefly. The FFT-based algorithm computes the output vector using element-wise additions of the σ vectors obtained by σ convolutions. Because a convolution is computed using two FFTs, element-wise multiplications, and an inverse of the FFT (IFFT), the number of FFTs is 3σ (on the assumption that each convolution is computed without dividing vectors). We change the order of the IFFT and the element-wise additions done after the convolutions, and then the σ IFFTs are computed as a single IFFT. Thus, the total number of FFT computations is reduced from 3σ to $2 \sigma+1$.

Another approach to improve the speed of the FFTbased algorithm is randomization. Atallah et al. [4] randomized the algorithm to reduce the processing time using a trade-off with the accuracy of the solution's estimation, and several improvements in the randomized algorithm were proposed [5-8]. The algorithm obtained by the proposed method computes the exact solution instead of an approximated one. Additionally, it is applicable to random-
ized algorithms, which yields a better trade-off between the processing time and the accuracy of approximation.

The acceleration method is applicable to other algorithms that partially use the computation of convolutions. Abrahamson [9] proposed the essential idea of an $O(n \sqrt{m \log m})$ algorithm for the match-count problem which is faster than the FFT-based algorithm when σ is large. This algorithm is regarded as a combination of the FFT-based algorithm for characters that occur frequently in the shorter string and a straightforward algorithm to count matches for the other characters. Fredriksson and Grabowski [10] proposed a parallel computation for convolutions which improves the complexity of Abrahamson's algorithm to $O(n \sqrt{m / w} \log m)$ for a word size $w=\Omega(\log n)$. The improved algorithm also uses the FFTbased algorithm for words obtained by packing plural characters into a single word of size w. Therefore, the acceleration method is applicable to those algorithms also.

2. Problem

Let Σ be a finite set of characters. For an integer $n>0$, Σ^{n} is the set of the strings of length n over Σ. For a string s of length n, s_{i} for $0 \leq i<n$ is the i th character of s. For strings s and t, st is the concatenation of s and t. For a character a and an integer $n>0, a^{n}$ is the string of $n a$'s.

Let δ be a function such that $\delta(a, b)$ for $a, b \in \Sigma$ is 1 if $a=b$, and 0 otherwise. Let $x \notin \Sigma$ be the never-match character, that is, $\delta(x, a)=\delta(a, x)=0$ for any $a \in \Sigma$. Then, the score vector between $s \in \Sigma^{m}$ and $t \in \Sigma^{n}(m \leq n)$ is defined as the vector $C(s, t)$ whose i th element for $0 \leq i \leq$ $m+n-2$ is
$c_{i}=\sum_{j=0}^{m-1} \delta\left(s_{j}, t_{i+j}^{\prime}\right)$,
where $t^{\prime}=x^{m-1} t x^{m-1}$. The match-count problem is a problem of computing the score vector between two strings.

3. Algorithm

We introduce the FFT-based algorithm [3] as the basic algorithm for the match-count problem, and we present a modification to it.

3.1. Basic algorithm

We introduce the $O(\sigma n \log n)$ algorithm that computes the score vector between two strings in Σ^{n}, where $|\Sigma|=\sigma$. The algorithm can be extended to an $O(\sigma n \log m)$ algorithm for two strings of lengths n and $m(<n)$ by dividing the longer string in the same way as the technique used in [4].

Let φ be a function from $\Sigma \cup\{x\}$ to \mathbf{N}, whose restriction from Σ to $\{0,1, \ldots, \sigma-1\}$ is bijective, and such that $\varphi(x)=0$. Let ϕ be the function from $\Sigma \cup\{x\}$ to $\{0,1\}^{\sigma}$ such that the i th element of $\phi(a)$ for $0 \leq i<\sigma$ and $a \in$ $\Sigma \cup\{x\}$ is 1 if $i=\varphi(a)$ and $a \in \Sigma$, and 0 otherwise. Then, $\langle\phi(a), \phi(b)\rangle=\delta(a, b)$ for $a, b \in \Sigma \cup\{x\}$. Let $l=2 n-1$. Let S and T be the $l \times \sigma$ matrices

$$
\begin{align*}
& S=\left(\phi\left(s_{n-1}\right)^{T}, \phi\left(s_{n-2}\right)^{T}, \ldots, \phi\left(s_{0}\right)^{T}, O^{T}, \ldots, O^{T}\right) \text { and } \\
& T=\left(\phi\left(t_{0}\right)^{T}, \phi\left(t_{1}\right)^{T}, \ldots, \phi\left(t_{n-1}\right)^{T}, O^{T}, \ldots, O^{T}\right) \tag{2}
\end{align*}
$$

where M^{T} is the transposed matrix of a matrix M and 0 is the zero vector of dimensionality σ. For any matrix M, we denote the (i, j)-element of M by $M_{i, j}$ with both indices starting from 0 . Then, Equation (1) is modified using Equation (2) as

$$
\begin{align*}
c_{i} & =\sum_{j=0}^{n-1}\left\langle\phi\left(s_{j}\right), \phi\left(t_{i+j}^{\prime}\right)\right\rangle=\sum_{j=0}^{l-1} \sum_{k=0}^{\sigma-1} S_{j, k} \cdot T_{i-j, k} \\
& =\sum_{k=0}^{\sigma-1} \sum_{j=0}^{l-1} s_{j, k} \cdot T_{i-j, k}, \tag{3}
\end{align*}
$$

for $0 \leq i<l$, where $T_{i, k}=T_{l+i, k}$ for any i and $0 \leq k<\sigma$. In Equation (3), we can see the circular convolution
$U_{i, k}=\sum_{j=0}^{l-1} S_{j, k} \cdot T_{i-j, k} \quad(0 \leq i<l)$
for each $0 \leq k<\sigma$. Then,
$c_{i}=\sum_{k=0}^{\sigma-1} U_{i, k}$
for $0 \leq i<l$.
Using Equation (4), the vector $\left(U_{0, k}, U_{1, k}, \ldots, U_{l-1, k}\right)$ is the circular convolution of the two vectors $\left(S_{0, k}, S_{1, k}, \ldots\right.$, $\left.S_{l-1, k}\right)$ and $\left(T_{0, k}, T_{1, k}, \ldots, T_{l-1, k}\right)$ for each $0 \leq k<\sigma$. Let F_{n} be the matrix of the discrete Fourier transform (DFT) with n sample points, that is, $\left(F_{n}\right)_{i, j}=\omega_{n}^{i j}$ for $0 \leq i, j<n$, where $\omega_{n}=e^{2 \pi \sqrt{-1} / n}$. Then, using the convolution theorem [2] with DFT,
$U=F_{l}^{-1}\left(F_{l} S \circ F_{l} T\right)$,
where \circ is the operator of the Hadamard product.
Thus, the basic algorithm to compute $C(s, t)$ is summarized as follows:

1. Convert s and t to S and T, respectively;
2. Compute $F_{l} S$ and $F_{l} T$ using 2σ FFTs;
3. Compute $X=F_{l} S \circ F_{l} T$ using element-wise multiplications;
4. Compute $U=F_{l}^{-1} X$ using σ FFTs; and
5. Compute $C(s, t)$ from U using element-wise additions.

The processing time of the algorithm is $O(\sigma l \log l)$, which leads to $O(\sigma n \log n)$. Process 1 needs $O(l)$ evaluations of ϕ, where an evaluation needs $O(\log \sigma)$ time. Process 2 consists of 2σ FFTs, where an FFT needs $O(l \log l)$ time. Process 3 needs $O(\sigma l)$ multiplications. Process 4 needs σ FFTs. Process 5 needs $O(\sigma l)$ additions. Therefore, the total processing time is bound by $O(\sigma l \log l)$.

https://daneshyari.com/en/article/4950832

Download Persian Version:

https://daneshyari.com/article/4950832

Daneshyari.com

[^0]: E-mail address: baba.kensuke@jp.fujitsu.com.

