
Information Processing Letters 125 (2017) 15–19

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Finding the largest fixed-density necklace and Lyndon word

Joe Sawada ∗, Patrick Hartman

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 April 2016
Received in revised form 18 April 2017
Accepted 19 April 2017
Available online 2 May 2017
Communicated by R. Uehara

Keywords:
Algorithms
Necklace
Lyndon word
Fixed-density
Ranking

We present an O (n) time algorithm for finding the lexicographically largest fixed-density 
necklace of length n. Then we determine whether or not a given string can be extended 
to a fixed-density necklace of length n in O (n2) time. Finally, we give an O (n3) algorithm 
that finds the largest fixed-density necklace of length n that is less than or equal to a given 
string. The efficiency of the latter algorithm is a key component to allow fixed-density 
necklaces to be ranked efficiently. The results are extended to find the largest fixed-density 
Lyndon word of length n (that is less than or equal to a given string) in O (n3) time.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A necklace is the lexicographically smallest string in an 
equivalence class of strings under rotation. A Lyndon word
is a primitive (aperiodic) necklace. The density of a binary 
string is the number of 1s it contains. Let N(n, d) denote 
the set of all binary necklaces with length n and density d. 
In this paper we present efficient algorithms for the fol-
lowing three problems:

1. finding the largest necklace in N(n, d),
2. determining if an arbitrary string is a prefix of some 

necklace in N(n, d), and
3. finding the largest necklace in N(n, d) that is less than 

or equal to a given binary string of length n.

The first problem can be answered in O (n) time, which 
is applied to answer the second problem in O (n2) time, 
which in turn is applied to answer the third problem in 
O (n3) time. The third problem can also be solved for fixed-
density Lyndon words in O (n3) time, which can immedi-
ately be used to find the largest fixed-density Lyndon word 

* Corresponding author.
E-mail address: jsawada@uoguelph.ca (J. Sawada).

of a given length. Solving the third problem efficiently for 
both necklaces and Lyndon words is a key step in the first 
efficient algorithms to rank and unrank fixed-density neck-
laces and Lyndon words [2]. When there is no density 
constraint, the third problem is known to be solvable in 
O (n2)-time; one such implementation is outlined in [10]. 
This problem was encountered in the first efficient algo-
rithms to rank and unrank necklaces and Lyndon words 
discovered independently by Kopparty, Kumar, and Saks [5]
and Kociumaka, Radoszewski and Rytter [4].

To illustrate these problems, consider the lexicographic 
listing of N(8, 3):

00000111,00001011,00001101,00010011,

00010101,00011001,00100101.

The largest necklace in this set is 00100101. The string 
0010 is a prefix of a necklace in this set, however, 010 is 
not. Given an arbitrary string α = 00011000, the largest 
necklace in this set that is less than or equal to α is 
00010101.

Fixed-density necklaces were first studied by Savage 
and Wang when they provided the first Gray code listing 
in [11]. Since then, an algorithm to efficiently list fixed-
density necklaces was given by Ruskey and Sawada [8] and 
another efficient algorithm to list them in cool-lex Gray 

http://dx.doi.org/10.1016/j.ipl.2017.04.010
0020-0190/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2017.04.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:jsawada@uoguelph.ca
http://dx.doi.org/10.1016/j.ipl.2017.04.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2017.04.010&domain=pdf


16 J. Sawada, P. Hartman / Information Processing Letters 125 (2017) 15–19

code order was given by Sawada and Williams [9]. The lat-
ter algorithm leads to an efficient algorithm to construct 
a fixed-density de Bruijn sequence by Ruskey, Sawada, and 
Williams [7]. When equivalence is further considered un-
der string reversal, an algorithm for listing fixed-density 
bracelets is given by Karim, Alamgir and Husnine [3].

The remainder of this paper is presented as follows. In 
Section 2, we present some preliminary results on neck-
laces and related objects. In Section 3, we present an 
O (n)-time algorithm to find the largest necklace in N(n, d). 
In Section 4, we present an O (n2)-time algorithm to deter-
mine whether or not a given string is a prefix of a necklace 
in N(n, d). In Section 5, we present an O (n3)-time algo-
rithm to finding the largest necklace in N(n, d) that is less 
than or equal to a given string. These results on necklaces 
are extended to Lyndon words in Section 6.

2. Preliminaries

Let α be a binary string and let lyn(α) denote the 
length of the longest prefix of α that is a Lyndon word. 
A prenecklace is a prefix of some necklace. The following 
theorem by Cattell et al. [1] has been called The Fundamen-
tal Theorem of Necklaces:

Theorem 2.1. Let α = a1a2 · · ·an−1 be a prenecklace over the 
alphabet � = {0, 1, . . . , k −1} and let p = lyn(α). Given b ∈ �, 
the string αb is a prenecklace if and only if an−p ≤ b. Further-
more,

lyn(αb) =
{

p if b = an−p

n if b > an−p (i.e., αb is a Lyndon word).

Corollary 2.2. If αb is a prenecklace then α(b+1) is a Lyndon 
word.

Corollary 2.3. If α = a1a2 · · ·an is a necklace then αa1 is a pre-
necklace and αb is a Lyndon word for all b > a1 .

The following is well-known property of Lyndon words by 
Reutenauer [6].

Lemma 2.4. If α and β are Lyndon words such that α < β then 
αβ is a Lyndon word.

Corollary 2.5. If α is a Lyndon word and β is a necklace such 
that α ≤ β then αβt is a necklace for t ≥ 1.

Proof. If α = β then clearly αβt is a (periodic) necklace. If 
β is a Lyndon word, then the result follows from repeated 
application of Lemma 2.4. Otherwise β = δi for some Lyn-
don word δ and i > 1. Note that α ≤ δ because otherwise 
α > β . If α < δ, then repeated application of Lemma 2.4
implies that αδ j is a Lyndon word for all j ≥ 0. If α = δ, 
then clearly αδ j is a (periodic) necklace for all j ≥ 1. In 
both cases, αβt will be a necklace for all t ≥ 1. �
Lemma 2.6. A k-ary string α = a1a2 · · ·an over alphabet 
{0, 1, . . . , k−1} is a necklace if and only if 0t−a1 10t−a2 1 · · ·
0t−an 1 is a necklace for all t ≥ k − 1.

Proof. (⇒) Assume α is a necklace. Let β = 0t−a1 10t−a2 1
· · ·0t−an 1 for some t ≥ k − 1. If β is not a necklace then 
there exists some 2 ≤ i ≤ n such that 0t−ai 10t−ai+1 1 · · ·
0t−an 10t−a1 1 · · ·0t−ai−1 1 < β . But this implies aiai+1 · · ·
ana1 · · ·ai−1 < α, contradicting the assumption that α
is a necklace. Thus β is a necklace. (⇐) Assume β =
0t−a1 10t−a2 1 · · · 0t−an 1 is a necklace for all t ≥ k − 1. If 
α is not a necklace then there exists some 2 ≤ i ≤ n
such that aiai+1 · · ·ana1 · · ·ai−1 < α. But this implies that 
0t−ai 10t−ai+1 1 · · ·0t−an 10t−a1 1 · · ·0t−ai−1 1 < β , contradict-
ing the assumption that β is a necklace. Thus α is a 
necklace. �
Lemma 2.7. A k-ary string α = a1a2 · · ·an over alphabet {0, 1,

. . . , k−1} is a necklace if and only if 01t+a1 01t+a2 · · ·01t+an is 
a necklace for all t ≥ 0.

Proof. (⇒) Assume α is a necklace. Let β = 01t+a1 01t+a2

· · ·01t+an for some t ≥ 0. If β is not a necklace there exists 
some 2 ≤ i ≤ n such that 01t+ai 01t+ai+1 · · ·01t+an 01t+a1 · · ·
01t+ai−1 < β . But this implies aiai+1 · · ·ana1 · · ·ai−1 < α, 
contradicting the assumption that α is a necklace. Thus 
β is a necklace. (⇐) Assume β = 01t+a1 01t+a2 · · ·01t+an

is a necklace for all t ≥ 0. If α is not a necklace there 
exists some 2 ≤ i ≤ n such that aiai+1 · · ·ana1 · · ·ai−1 < α. 
But this implies that 01t+ai 01t+ai+1 · · ·01t+an 01t+a1 · · ·
01t+ai−1 < β , contradicting the assumption that β is a 
necklace. Thus α is a necklace. �
3. Finding the largest necklace with a given density

Let LargestNeck(n, d) denote the lexicographically
largest binary necklace in N(n, d).

Lemma 3.1. Let 0 < d ≤ n and t = �n
d 	. Then

LargestNeck(n,d) = 0t−b1 10t−b2 1 · · · 0t−bd 1,

where b1b2 · · ·bd = LargestNeck(d, d − (n mod d)).

Proof. Since d > 0, α = LargestNeck(n, d) can be writ-
ten as 0c1 10c2 1 · · ·0cd 1 where each ci ≥ 0. Let x = d −
(n mod d). Observe that α ≥ (0t 1)d−x(0t−11)x ∈ N(n, d) (it 
is a simple calculation to verify the length). Thus, c1 ≤ t , 
and moreover each ci ≤ t since α is a necklace. Therefore 
α can be expressed as 0t−b1 10t−b2 1 · · ·0t−bd 1 for some 
string β = b1b2 · · ·bd over the alphabet {0, 1, . . . , t}. By 
Lemma 2.6, β is a necklace. Suppose there is some largest 
1 ≤ i ≤ d such that bi > 1. Thus, each element of bi+1 · · ·bd
must be in {0, 1}. Since β is a necklace, each of its ro-
tations b j · · ·bdb1 · · ·b j−1 ≥ β . Thus, we can deduce that 
if j > i then b j · · ·bdb1 · · ·b j−1 > b1b2 · · ·bi−1. This im-
plies that b j · · ·bdb1 · · ·bi−1 > b1b2 · · ·bi−1. Now consider 
γ = b1b2 · · ·bi−2(bi−1+1)bi+1 · · ·bd . Since b1b2 · · ·bi−1 is 
a prenecklace, b1b2 · · ·bi−2(bi−1+1) is a Lyndon word 
by Corollary 2.2. Thus any proper rotation of γ start-
ing before bi+1 will be strictly greater than γ . Now 
consider a rotation of γ starting from b j for i + 1 ≤
j ≤ d. Observe that a rotation starting from b j has pre-
fix b j · · ·bdb1 · · ·bi−2(bi−1 + 1). We have already noted 
that b j · · ·bdb1 · · ·bi−1 > b1b2 · · ·bi−1, and therefore the 



Download	English	Version:

https://daneshyari.com/en/article/4950835

Download	Persian	Version:

https://daneshyari.com/article/4950835

Daneshyari.com

https://daneshyari.com/en/article/4950835
https://daneshyari.com/article/4950835
https://daneshyari.com/

