Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

processing letters

Finding the largest fixed-density necklace and Lyndon word

Joe Sawada*, Patrick Hartman

ARTICLE INFO

Article history: Received 7 April 2016 Received in revised form 18 April 2017 Accepted 19 April 2017 Available online 2 May 2017 Communicated by R. Uehara

Keywords: Algorithms Necklace Lyndon word Fixed-density Ranking

1. Introduction

A *necklace* is the lexicographically smallest string in an equivalence class of strings under rotation. A *Lyndon word* is a primitive (aperiodic) necklace. The *density* of a binary string is the number of 1s it contains. Let N(n, d) denote the set of all binary necklaces with length *n* and density *d*. In this paper we present efficient algorithms for the following three problems:

- 1. finding the largest necklace in N(n, d),
- 2. determining if an arbitrary string is a prefix of some necklace in N(n, d), and
- 3. finding the largest necklace in N(n, d) that is less than or equal to a given binary string of length *n*.

The first problem can be answered in O(n) time, which is applied to answer the second problem in $O(n^2)$ time, which in turn is applied to answer the third problem in $O(n^3)$ time. The third problem can also be solved for fixeddensity Lyndon words in $O(n^3)$ time, which can immediately be used to find the largest fixed-density Lyndon word

http://dx.doi.org/10.1016/j.ipl.2017.04.010 0020-0190/© 2017 Elsevier B.V. All rights reserved.

ABSTRACT

We present an O(n) time algorithm for finding the lexicographically largest fixed-density necklace of length *n*. Then we determine whether or not a given string can be extended to a fixed-density necklace of length *n* in $O(n^2)$ time. Finally, we give an $O(n^3)$ algorithm that finds the largest fixed-density necklace of length *n* that is less than or equal to a given string. The efficiency of the latter algorithm is a key component to allow fixed-density necklaces to be ranked efficiently. The results are extended to find the largest fixed-density Lyndon word of length *n* (that is less than or equal to a given string) in $O(n^3)$ time.

© 2017 Elsevier B.V. All rights reserved.

of a given length. Solving the third problem efficiently for both necklaces and Lyndon words is a key step in the first efficient algorithms to rank and unrank fixed-density necklaces and Lyndon words [2]. When there is no density constraint, the third problem is known to be solvable in $O(n^2)$ -time; one such implementation is outlined in [10]. This problem was encountered in the first efficient algorithms to rank and unrank necklaces and Lyndon words discovered independently by Kopparty, Kumar, and Saks [5] and Kociumaka, Radoszewski and Rytter [4].

To illustrate these problems, consider the lexicographic listing of N(8, 3):

00000111,00001011,00001101,00010011,

00010101,00011001,00100101.

The largest necklace in this set is 00100101. The string 0010 is a prefix of a necklace in this set, however, 010 is not. Given an arbitrary string $\alpha = 00011000$, the largest necklace in this set that is less than or equal to α is 00010101.

Fixed-density necklaces were first studied by Savage and Wang when they provided the first Gray code listing in [11]. Since then, an algorithm to efficiently list fixeddensity necklaces was given by Ruskey and Sawada [8] and another efficient algorithm to list them in cool-lex Gray

^{*} Corresponding author. E-mail address: jsawada@uoguelph.ca (J. Sawada).

code order was given by Sawada and Williams [9]. The latter algorithm leads to an efficient algorithm to construct a fixed-density de Bruijn sequence by Ruskey, Sawada, and Williams [7]. When equivalence is further considered under string reversal, an algorithm for listing fixed-density bracelets is given by Karim, Alamgir and Husnine [3].

The remainder of this paper is presented as follows. In Section 2, we present some preliminary results on necklaces and related objects. In Section 3, we present an O(n)-time algorithm to find the largest necklace in $\mathbf{N}(n, d)$. In Section 4, we present an $O(n^2)$ -time algorithm to determine whether or not a given string is a prefix of a necklace in $\mathbf{N}(n, d)$. In Section 5, we present an $O(n^3)$ -time algorithm to finding the largest necklace in $\mathbf{N}(n, d)$ that is less than or equal to a given string. These results on necklaces are extended to Lyndon words in Section 6.

2. Preliminaries

Let α be a binary string and let $lyn(\alpha)$ denote the length of the longest prefix of α that is a Lyndon word. A *prenecklace* is a prefix of some necklace. The following theorem by Cattell et al. [1] has been called *The Fundamental Theorem of Necklaces*:

Theorem 2.1. Let $\alpha = a_1 a_2 \cdots a_{n-1}$ be a prenecklace over the alphabet $\Sigma = \{0, 1, \dots, k-1\}$ and let $p = lyn(\alpha)$. Given $b \in \Sigma$, the string αb is a prenecklace if and only if $a_{n-p} \leq b$. Furthermore,

$$lyn(\alpha b) = \begin{cases} p & if b = a_{n-p} \\ n & if b > a_{n-p} \end{cases}$$
 (i.e., αb is a Lyndon word).

Corollary 2.2. *If* αb *is a prenecklace then* $\alpha(b+1)$ *is a Lyndon word.*

Corollary 2.3. If $\alpha = a_1 a_2 \cdots a_n$ is a necklace then αa_1 is a prenecklace and αb is a Lyndon word for all $b > a_1$.

The following is well-known property of Lyndon words by Reutenauer [6].

Lemma 2.4. If α and β are Lyndon words such that $\alpha < \beta$ then $\alpha\beta$ is a Lyndon word.

Corollary 2.5. If α is a Lyndon word and β is a necklace such that $\alpha \leq \beta$ then $\alpha \beta^t$ is a necklace for $t \geq 1$.

Proof. If $\alpha = \beta$ then clearly $\alpha \beta^i$ is a (periodic) necklace. If β is a Lyndon word, then the result follows from repeated application of Lemma 2.4. Otherwise $\beta = \delta^i$ for some Lyndon word δ and i > 1. Note that $\alpha \leq \delta$ because otherwise $\alpha > \beta$. If $\alpha < \delta$, then repeated application of Lemma 2.4 implies that $\alpha \delta^j$ is a Lyndon word for all $j \geq 0$. If $\alpha = \delta$, then clearly $\alpha \delta^j$ is a (periodic) necklace for all $j \geq 1$. In both cases, $\alpha \beta^t$ will be a necklace for all $t \geq 1$.

Lemma 2.6. A k-ary string $\alpha = a_1 a_2 \cdots a_n$ over alphabet $\{0, 1, \ldots, k-1\}$ is a necklace if and only if $0^{t-a_1} 10^{t-a_2} 1 \cdots 0^{t-a_n} 1$ is a necklace for all t > k - 1.

Proof. (\Rightarrow) Assume α is a necklace. Let $\beta = 0^{t-a_1} 10^{t-a_2} 1 \cdots 0^{t-a_n} 1$ for some $t \ge k-1$. If β is not a necklace then there exists some $2 \le i \le n$ such that $0^{t-a_i} 10^{t-a_{i+1}} 1 \cdots 0^{t-a_n} 10^{t-a_{i-1}} 1 < \beta$. But this implies $a_i a_{i+1} \cdots a_n a_1 \cdots a_{i-1} < \alpha$, contradicting the assumption that α is a necklace. Thus β is a necklace for all $t \ge k-1$. If α is not a necklace then there exists some $2 \le i \le n$ such that $a_i a_{i+1} \cdots a_n a_1 \cdots a_{i-1} < \alpha$, contradicting the assumption that α is not a necklace then there exists some $2 \le i \le n$ such that $a_i a_{i+1} \cdots a_n a_1 \cdots a_{i-1} < \alpha$. But this implies that $0^{t-a_i} 10^{t-a_{i+1}} 1 \cdots 0^{t-a_n} 10^{t-a_1} 1 \cdots 0^{t-a_{i-1}} 1 < \beta$, contradicting the assumption that β is a necklace. Thus α is a necklace. \Box

Lemma 2.7. A k-ary string $\alpha = a_1 a_2 \cdots a_n$ over alphabet $\{0, 1, \dots, k-1\}$ is a necklace if and only if $01^{t+a_1}01^{t+a_2}\cdots 01^{t+a_n}$ is a necklace for all t > 0.

Proof. (\Rightarrow) Assume α is a necklace. Let $\beta = 01^{t+a_1}01^{t+a_2} \cdots 01^{t+a_n}$ for some $t \ge 0$. If β is not a necklace there exists some $2 \le i \le n$ such that $01^{t+a_i}01^{t+a_{i+1}} \cdots 01^{t+a_n}01^{t+a_1} \cdots 01^{t+a_{i-1}} < \beta$. But this implies $a_i a_{i+1} \cdots a_n a_1 \cdots a_{i-1} < \alpha$, contradicting the assumption that α is a necklace. Thus β is a necklace. (\Leftarrow) Assume $\beta = 01^{t+a_1}01^{t+a_2} \cdots 01^{t+a_n}$ is a necklace for all $t \ge 0$. If α is not a necklace there exists some $2 \le i \le n$ such that $a_i a_{i+1} \cdots a_n a_1 \cdots a_{i-1} < \alpha$. But this implies that $01^{t+a_i}01^{t+a_i} \cdots 01^{t+a_n}01^{t+a_1} \cdots 01^{t+a_n}01^{t+a_1} \cdots 01^{t+a_{i-1}} < \beta$, contradicting the assumption that β is a necklace. Thus α is a necklace.

3. Finding the largest necklace with a given density

Let LARGESTNECK(n, d) denote the lexicographically largest binary necklace in **N**(n, d).

Lemma 3.1. Let $0 < d \le n$ and $t = \lfloor \frac{n}{d} \rfloor$. Then

LARGESTNECK $(n, d) = 0^{t-b_1} 10^{t-b_2} 1 \cdots 0^{t-b_d} 1$,

where $b_1b_2\cdots b_d = \text{LargestNeck}(d, d - (n \mod d))$.

Proof. Since d > 0, $\alpha = \text{LARGESTNECK}(n, d)$ can be written as $0^{c_1}10^{c_2}1\cdots 0^{c_d}1$ where each $c_i \ge 0$. Let x = d - d(*n* mod *d*). Observe that $\alpha \ge (0^t 1)^{d-x} (0^{t-1} 1)^x \in \mathbf{N}(n, d)$ (it is a simple calculation to verify the length). Thus, $c_1 < t$, and moreover each $c_i \leq t$ since α is a necklace. Therefore α can be expressed as $0^{t-b_1}10^{t-b_2}1\cdots 0^{t-b_d}1$ for some string $\beta = b_1 b_2 \cdots b_d$ over the alphabet $\{0, 1, \dots, t\}$. By Lemma 2.6, β is a necklace. Suppose there is some largest $1 \le i \le d$ such that $b_i > 1$. Thus, each element of $b_{i+1} \cdots b_d$ must be in $\{0, 1\}$. Since β is a necklace, each of its rotations $b_i \cdots b_d b_1 \cdots b_{i-1} \ge \beta$. Thus, we can deduce that if j > i then $b_1 \cdots b_d b_1 \cdots b_{i-1} > b_1 b_2 \cdots b_{i-1}$. This implies that $b_1 \cdots b_d b_1 \cdots b_{i-1} > b_1 b_2 \cdots b_{i-1}$. Now consider $\gamma = b_1 b_2 \cdots b_{i-2} (b_{i-1}+1) b_{i+1} \cdots b_d$. Since $b_1 b_2 \cdots b_{i-1}$ is a prenecklace, $b_1b_2\cdots b_{i-2}(b_{i-1}+1)$ is a Lyndon word by Corollary 2.2. Thus any proper rotation of γ starting before b_{i+1} will be strictly greater than γ . Now consider a rotation of γ starting from b_j for $i+1 \leq$ $j \leq d$. Observe that a rotation starting from b_i has prefix $b_j \cdots b_d b_1 \cdots b_{i-2} (b_{i-1} + 1)$. We have already noted that $b_1 \cdots b_d b_1 \cdots b_{i-1} > b_1 b_2 \cdots b_{i-1}$, and therefore the Download English Version:

https://daneshyari.com/en/article/4950835

Download Persian Version:

https://daneshyari.com/article/4950835

Daneshyari.com