Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Information Processing Letters

www.elsevier.com/locate/ipl

Finding the largest fixed-density necklace and Lyndon word

Joe Sawada [∗], Patrick Hartman

A R T I C L E I N F O A B S T R A C T

Article history: Received 7 April 2016 Received in revised form 18 April 2017 Accepted 19 April 2017 Available online 2 May 2017 Communicated by R. Uehara

Keywords: Algorithms Necklace Lyndon word Fixed-density Ranking

1. Introduction

A *necklace* is the lexicographically smallest string in an equivalence class of strings under rotation. A *Lyndon word* is a primitive (aperiodic) necklace. The *density* of a binary string is the number of 1s it contains. Let **N***(n,d)* denote the set of all binary necklaces with length *n* and density *d*. In this paper we present efficient algorithms for the following three problems:

- 1. finding the largest necklace in $N(n, d)$,
- 2. determining if an arbitrary string is a prefix of some necklace in **N***(n,d)*, and
- 3. finding the largest necklace in $N(n, d)$ that is less than or equal to a given binary string of length *n*.

The first problem can be answered in $O(n)$ time, which is applied to answer the second problem in $O(n^2)$ time, which in turn is applied to answer the third problem in $O(n^3)$ time. The third problem can also be solved for fixeddensity Lyndon words in $O(n^3)$ time, which can immediately be used to find the largest fixed-density Lyndon word

We present an $O(n)$ time algorithm for finding the lexicographically largest fixed-density necklace of length *n*. Then we determine whether or not a given string can be extended to a fixed-density necklace of length *n* in $O(n^2)$ time. Finally, we give an $O(n^3)$ algorithm that finds the largest fixed-density necklace of length *n* that is less than or equal to a given string. The efficiency of the latter algorithm is a key component to allow fixed-density necklaces to be ranked efficiently. The results are extended to find the largest fixed-density Lyndon word of length *n* (that is less than or equal to a given string) in $O(n^3)$ time.

© 2017 Elsevier B.V. All rights reserved.

of a given length. Solving the third problem efficiently for both necklaces and Lyndon words is a key step in the first efficient algorithms to rank and unrank fixed-density necklaces and Lyndon words [\[2\].](#page--1-0) When there is no density constraint, the third problem is known to be solvable in $O(n^2)$ -time; one such implementation is outlined in [\[10\].](#page--1-0) This problem was encountered in the first efficient algorithms to rank and unrank necklaces and Lyndon words discovered independently by Kopparty, Kumar, and Saks [\[5\]](#page--1-0) and Kociumaka, Radoszewski and Rytter $[4]$.

To illustrate these problems, consider the lexicographic listing of **N***(*8*,* 3*)*:

00000111*,* 00001011*,* 00001101*,* 00010011*,*

00010101*,* 00011001*,* 00100101*.*

The largest necklace in this set is 00100101. The string 0010 is a prefix of a necklace in this set, however, 010 is not. Given an arbitrary string $\alpha = 00011000$, the largest necklace in this set that is less than or equal to *α* is 00010101

Fixed-density necklaces were first studied by Savage and Wang when they provided the first Gray code listing in [\[11\].](#page--1-0) Since then, an algorithm to efficiently list fixeddensity necklaces was given by Ruskey and Sawada [\[8\]](#page--1-0) and another efficient algorithm to list them in cool-lex Gray

^{*} Corresponding author. *E-mail address:* jsawada@uoguelph.ca (J. Sawada).

code order was given by Sawada and Williams [\[9\].](#page--1-0) The latter algorithm leads to an efficient algorithm to construct a fixed-density de Bruijn sequence by Ruskey, Sawada, and Williams [\[7\].](#page--1-0) When equivalence is further considered under string reversal, an algorithm for listing fixed-density bracelets is given by Karim, Alamgir and Husnine [\[3\].](#page--1-0)

The remainder of this paper is presented as follows. In Section 2, we present some preliminary results on necklaces and related objects. In Section 3, we present an *O(n)*-time algorithm to find the largest necklace in **N***(n,d)*. In Section [4,](#page--1-0) we present an $O(n^2)$ -time algorithm to determine whether or not a given string is a prefix of a necklace in $N(n, d)$. In Section [5,](#page--1-0) we present an $O(n^3)$ -time algorithm to finding the largest necklace in $N(n, d)$ that is less than or equal to a given string. These results on necklaces are extended to Lyndon words in Section [6.](#page--1-0)

2. Preliminaries

Let *α* be a binary string and let *lyn(α)* denote the length of the longest prefix of *α* that is a Lyndon word. A *prenecklace* is a prefix of some necklace. The following theorem by Cattell et al. [\[1\]](#page--1-0) has been called *The Fundamental Theorem of Necklaces*:

Theorem 2.1. *Let* $\alpha = a_1 a_2 \cdots a_{n-1}$ *be a prenecklace over the alphabet* $\Sigma = \{0, 1, \ldots, k-1\}$ *and let* $p = \text{lyn}(\alpha)$ *. Given* $b \in \Sigma$ *, the string* αb *is a* prenecklace *if* and only *if* $a_{n-n} \leq b$. Further*more,*

$$
lyn(\alpha b) = \begin{cases} p & \text{if } b = a_{n-p} \\ n & \text{if } b > a_{n-p} \end{cases}
$$
 (i.e., αb is a Lyndon word).

Corollary 2.2. *If* α *b is a prenecklace then* α (*b*+1) *is a Lyndon word.*

Corollary 2.3. If $\alpha = a_1 a_2 \cdots a_n$ is a necklace then αa_1 is a pre*necklace and* αb *is a Lyndon word* for all $b > a_1$ *.*

The following is well-known property of Lyndon words by Reutenauer [\[6\].](#page--1-0)

Lemma 2.4. *If* α *and* β *are Lyndon words such that* $\alpha < \beta$ *then αβ is a Lyndon word.*

Corollary 2.5. *If* α *is a Lyndon word and* β *is a necklace such that* $\alpha \leq \beta$ *then* $\alpha \beta^t$ *is a necklace for* $t \geq 1$ *.*

Proof. If $\alpha = \beta$ then clearly $\alpha \beta^t$ is a (periodic) necklace. If *β* is a Lyndon word, then the result follows from repeated application of Lemma 2.4. Otherwise $\beta = \delta^i$ for some Lyndon word *δ* and *i* > 1. Note that $\alpha \leq \delta$ because otherwise *α* > *β*. If α < *δ*, then repeated application of Lemma 2.4 implies that $\alpha \delta^j$ is a Lyndon word for all $j > 0$. If $\alpha = \delta$, then clearly $\alpha \delta^j$ is a (periodic) necklace for all $j \ge 1$. In both cases, $\alpha \beta^t$ will be a necklace for all $t \geq 1$. \Box

Lemma 2.6. *A k*-*ary string* $\alpha = a_1 a_2 \cdots a_n$ *over alphabet* {0*,* 1*,...,k*−1} *is a necklace if and only if* 0*t*−*a*¹ 10*t*−*a*² 1 ··· 0^{t-a_n} 1 *is a necklace for all* $t > k - 1$.

Proof. (\Rightarrow) Assume α is a necklace. Let $\beta = 0^{t-a_1}10^{t-a_2}1$ \cdots 0^{*t*−*an*}1 for some *t* ≥ *k* − 1. If *β* is not a necklace then there exists some $2 < i < n$ such that $0^{t-a_i}10^{t-a_{i+1}}1 \cdots$ $0^{t-a_n}10^{t-a_1}1\cdots0^{t-a_{i-1}}1 < \beta$. But this implies $a_ia_{i+1}\cdots$ *ana*¹ ···*ai*−¹ *< α*, contradicting the assumption that *α* is a necklace. Thus *β* is a necklace. (\Leftarrow) Assume *β* = $0^{t-a_1}10^{t-a_2}1\cdots0^{t-a_n}1$ is a necklace for all $t > k - 1$. If *α* is not a necklace then there exists some 2 ≤ *i* ≤ *n* such that $a_i a_{i+1} \cdots a_n a_1 \cdots a_{i-1} < \alpha$. But this implies that 0*t*−*ai* 10*t*−*ai*+¹ 1 ··· 0*t*−*an*10*t*−*a*¹ 1 ··· 0*t*−*ai*−¹ 1 *< β*, contradicting the assumption that *β* is a necklace. Thus *α* is a necklace. □

Lemma 2.7. *A k*-ary *string* $\alpha = a_1 a_2 \cdots a_n$ *over alphabet* {0*,* 1*, ...,k*−1} *is a necklace if and only if* 01*t*+*a*¹ 01*t*+*a*² ··· 01*t*+*an is a* necklace for all $t > 0$.

Proof. (\Rightarrow) Assume α is a necklace. Let $\beta = 01^{t+a_1}01^{t+a_2}$ $\cdots 01^{t+a_n}$ for some $t > 0$. If *β* is not a necklace there exists some $2 < i < n$ such that $01^{t+a_i}01^{t+a_{i+1}} \cdots 01^{t+a_n}01^{t+a_1} \cdots$ $01^{t+a_{i-1}} < \beta$. But this implies $a_i a_{i+1} \cdots a_n a_1 \cdots a_{i-1} < \alpha$, contradicting the assumption that *α* is a necklace. Thus *β* is a necklace. (←) Assume $β = 01^{t+a_1}01^{t+a_2} \cdots 01^{t+a_n}$ is a necklace for all $t \geq 0$. If α is not a necklace there exists some $2 \le i \le n$ such that $a_i a_{i+1} \cdots a_n a_1 \cdots a_{i-1} < \alpha$. But this implies that $01^{t+a_i}01^{t+a_{i+1}}\cdots01^{t+a_n}01^{t+a_1}\cdots$ $01^{t+q_{i-1}} < \beta$, contradicting the assumption that β is a necklace. Thus α is a necklace. \Box

3. Finding the largest necklace with a given density

Let L ARGESTNECK (n, d) denote the lexicographically largest binary necklace in **N***(n,d)*.

Lemma 3.1. *Let* $0 < d \le n$ *and* $t = \lfloor \frac{n}{d} \rfloor$ *. Then*

 L ARGESTNECK $(n, d) = 0^{t-b_1} 10^{t-b_2} 1 \cdots 0^{t-b_d} 1$

 $where b_1b_2 \cdots b_d = \text{LARGE}(\frac{d}{d}, d - (n \mod d)).$

Proof. Since $d > 0$, $\alpha =$ LARGESTNECK (n, d) can be written as $0^{c_1} 10^{c_2} 1 \cdots 0^{c_d} 1$ where each $c_i \geq 0$. Let $x = d$ – *(n* mod *d*). Observe that $\alpha \ge (0^t 1)^{d-x} (0^{t-1} 1)^x \in N(n, d)$ (it is a simple calculation to verify the length). Thus, $c_1 < t$, and moreover each $c_i \leq t$ since α is a necklace. Therefore *α* can be expressed as $0^{t−b₁}10^{t−b₂}1...0^{t−b_d}1$ for some string $\beta = b_1 b_2 \cdots b_d$ over the alphabet $\{0, 1, \ldots, t\}$. By Lemma 2.6, *β* is a necklace. Suppose there is some largest $1 \leq i \leq d$ such that $b_i > 1$. Thus, each element of $b_{i+1} \cdots b_d$ must be in {0*,* 1}. Since *β* is a necklace, each of its rotations $b_j \cdots b_d b_1 \cdots b_{j-1} \ge \beta$. Thus, we can deduce that if $j > i$ then $b_j \cdots b_d b_1 \cdots b_{j-1} > b_1 b_2 \cdots b_{i-1}$. This implies that $b_j \cdots b_d b_1 \cdots b_{i-1} > b_1 b_2 \cdots b_{i-1}$. Now consider $\gamma = b_1 b_2 \cdots b_{i-2} (b_{i-1}+1) b_{i+1} \cdots b_d$. Since $b_1 b_2 \cdots b_{i-1}$ is a prenecklace, $b_1b_2\cdots b_{i-2}(b_{i-1}+1)$ is a Lyndon word by Corollary 2.2. Thus any proper rotation of *γ* starting before b_{i+1} will be strictly greater than γ . Now consider a rotation of γ starting from b_j for $i + 1 \leq$ $j \leq d$. Observe that a rotation starting from b_j has prefix $b_j \cdots b_d b_1 \cdots b_{i-2} (b_{i-1} + 1)$. We have already noted that $b_j \cdots b_d b_1 \cdots b_{i-1} > b_1 b_2 \cdots b_{i-1}$, and therefore the

Download English Version:

<https://daneshyari.com/en/article/4950835>

Download Persian Version:

<https://daneshyari.com/article/4950835>

[Daneshyari.com](https://daneshyari.com/)